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Modeling Data observed on Spheres and Graphs

Abstract

This dissertation presents novel methods for two spatial modeling problems: tangential vector

random fields on a sphere and stochastic processes on undirected graphs. The solutions use the

specific characteristic of the spatial domains and provide new perspectives on characterizing the

processes using the spectral decomposition of the Laplacian operator. The methods are used in

various applications related to geophysics and economics.
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CHAPTER 1

Overview

Spatial data structures are prevalent in many fields of study. Their covariance structures are

commonly modeled based on Euclidean distances between locations that incorporate the notions of

stationary and isotropy. Euclidean distances are not appropriate for capturing the characteristics

of processes defined over non-Euclidean space, such as a sphere. In practice, the assumptions of

stationarity and isotropy of physical processes are subject to empirical verification and physical

plausibility. Moreover, models for covariances determined by the Euclidean distance are hard to

extend to non-stationary or anisotropic fields. We propose classes of parametric models for Gaussian

processes on a sphere and on an undirected graph, that utilize the geometric characteristics of the

respective domains, though the spectral decomposition of the Laplacian operator. We study the

properties of the models and develop efficient estimation and prediction procedures based on the

likelihood method.

In Chapter 2, we propose a parametric model for tangential vector random fields (TVRFs) on

the surface of a sphere based on a vector spherical harmonics (VSH) representation. We construct

vector random fields on a sphere by making use of the spectral representations in the VSH basis with

random coefficients. This representation of the vector field in terms of the VSH basis naturally

incorporates the Helmholtz-Hodge decomposition, enabling us to decompose vector fields on a

sphere uniquely as a sum of curl-free and divergence-free fields while satisfying natural physical

constraints. We propose a likelihood-based method to estimate the model parameters, and this

random effects representation facilitates efficient computation of the maximum likelihood estimates

of the parameters. The model enables us to use a parametric bootstrap method for uncertainty

quantification. When the data are on an equiangular grid, the computational efficiency can be

enhanced by using a discrete VSH transformation. We conduct extensive numerical studies to

illustrate the estimation, model selection, and prediction performance of the proposed method. We
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apply the proposed methodology to analyze the Orsted satellite-based measurements on the Earth’s

magnetic field.

In Chapter 3, we consider a class of stochastic processes observed on a set of nodes such that

the processes are characterized using the graph Laplacian associated with an undirected graph on

these nodes. These processes generalize stationary processes from temporal or spatial domains

to the setting where the domain is an undirected graph. We construct the model using spectral

decomposition of the graph Laplacian and consider several parametric models for such processes,

assuming that the graph structure is known from extraneous information. We study inference

questions on geometric graphs for the associated parameters. We examine the effects of graph

sizes, missing nodes, and node structures on our model estimation and prediction performance.

As an illustration, we apply this method to study the per capita gross domestic product (GDPc)

across several counties, where the associated graph is the neighborhood graph.

2
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CHAPTER 2

Tangential Vector Random Fields on a Sphere Using VSH

2.1. Introduction

Modeling vector random fields (VRFs) on a sphere has received considerable attention in recent

years in many applications. In geophysics, Earth’s magnetic field is a well-known example of a VRF

on a sphere. In the atmospheric science, surface velocity winds and ocean currents are modeled as

tangential VRFs (TVRFs) on Earth. Researchers also study the Helmholtz-Hodge decomposition

of vector fields while retaining their geometric features. The Helmholtz-Hodge theorem implies that

any vector fields on a sphere can be decomposed uniquely into a divergence-free component and a

curl-free component. For instance, the divergence-free part of the horizontal wind field offers details

about cyclonic storms, whereas the curl-free field offers features on high and low pressures systems

[22][23]. Watterson [47] explains that the gyres within each ocean basin are divergence-free fields,

and the overturning flows are in the irrotational field. Therefore, the decomposition can provide

useful diagnostic information in associated applications [14]. Thus, it is essential to preserve the

geometric features of the vector field during the estimation and predictions in modeling.

Applicable approaches to modeling VRFs on a sphere include treating the vector fields as multi-

variate random processes. Gneiting et al. [15] introduce the bivariate isotropic multivariate Matérn

model and Apanasovich et al. [1] develop the multivariate stationary Matérn model with any num-

ber of components, which produces flexible parameter selections in each component. Kleiber and

Nychka [28] develop a parametric non-stationary multivariate model with locally-varying parame-

ters. It is not straightforward to extend these models to a sphere, as a proper distance metric is

not readily available.

Other approaches to modeling multivariate random fields on a sphere include the use of differ-

ential operators. Jun and Stein [27] focus on the construction and characterization of covariance

functions for Gaussian random fields on a sphere. Stein [46] models axially-symmetric processes

3
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on a sphere using covariance functions in the form of scalar spherical harmonics (SSH). Jun [25]

applies differential operators to multivariate isotropic spatial processes to construct non-stationary

processes on a globe. Jun [26] proposes Matérn based non-stationary cross-covariance models

for processes in a sphere with flexible spatially varying cross-correlation coefficients, which are

smoothness parameters coupled with the differential operators. Those models do not incorporate

any natural physical constraints on the VRF, such as the fields being divergence-free, as is often

encountered in geophysical applications.

Narcowich et al. [38] present a method of constructing a divergence-free tangential vector field

to surfaces in R3 with radial basis functions (RBFs). It uses the Hessian matrix of the RBFs

in Cartesian coordinates, and the output must be converted to spherical coordinates. Fuselier

and Wright [14] construct a tangential vector field on a sphere with RBFs. They implement

surface-gradient and surface-curl on the RBFs, and the constructed tangential vector field can

be decomposed into divergence-free and curl-free fields. Their construction includes the physical

constraints, but they do not manifest on TVRFs.

Recently, Fan et al. [10] propose the Tangent Matérn model, which constructs a tangential

random field on a unit sphere that contains the physical constraints. They apply a surface gradient

and surface-curl operators to a scalar isotropic potential field to construct random fields. Its cross-

covariance structure is chosen as a bivariate Matérn Model.

We propose a parametric model for VRFs on the surface of a sphere using VSH representations.

The model provides a unified framework for modeling both mean and residuals fields within the

linear mixed effects model framework. Because of the construction of the VSH basis itself, the re-

sulting process naturally admits a Helmholtz-Hodge decomposition whose components are modeled

parametrically. Thus, this model produces a physically interpretable decomposition of vector fields

on a sphere and preserves the geometric features of the field even for prediction. The computational

efficiency can be enhanced with an equiangular grid by using a discrete VSH transform. Moreover,

the proposed model enables more accurate and principled uncertainty quantification of various

quantities of interest using either a parametric bootstrap procedure or an asymptotic theory.

We illustrate the proposed VRF model by applying it to describe Earth’s main magnetic field

based on the Ørsted satellite survey data. In geophysics, modeling the main magnetic fields has
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been actively researched due to its importance and challenges. The typical approach to modeling

the geomagnetic vector field is to model it as the gradient of a scalar potential field, while the latter

is modeled deterministically using a scalar spherical harmonics (SSH) representation [24]. CHAOS

6 [11] is currently one of the most accurate main magnetic field models and is likewise derived from

the scalar potential field modelings. We apply the proposed model to the geomagnetic vector field,

and the results show the benefit of modeling the random fluctuations over competing deterministic

models in terms of improved fit and prediction accuracy. We also provide a principled approach

to uncertainty quantification for the fitted vector field, which is an important contribution in this

application domain.

The remainder of this article is organized as follows. In Section 2.2, we discuss the construction

of VSH from SSH and connect it to Helmholtz-Hodge decomposition. We construct a tangential

vector random field (TVRF) on the unit sphere through its representation in the VSH basis and

propose a parametric Gaussian model with its covariance structure in Section 2.3. In Section 2.4, we

discuss the maximum likelihood estimators (MLEs) of our model and best linear unbiased predictors

(BLUPs). We conduct simulation studies in Section 2.5 to explore the empirical performance of

our model, and we illustrate our model for application to geomagnetic fields in Section 2.6.

2.2. Vector Spherical Harmonics

Vector spherical Harmonics (VSH) have a fundamental role in our construction of VRFs on a

sphere, so we review its definition and properties.

2.2.1. SSH and VSH. The complex scalar spherical harmonic, Yl,m(θ, φ), of degree l and

order m are defined as

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pl,m(cos θ) exp(imφ), m ≥ 0(2.1)

Yl,m(θ, φ) = (−1)mY ∗l,−m(θ, φ), m < 0(2.2)

where l = 0, 1, 2, ...,−l ≤ m ≤ l, 0 ≤ θ < π, 0 ≤ φ < 2π. θ is a polar angle (colatitude), and φ is an

azimuthal angle in a spherical coordinate system. {Pl,m} is the associated Legendre function with

degree l and order m, where l = 0, 1, 2, · · · and −l ≤ m ≤ l. Y ∗l,m(θ, φ) is the complex conjugate of

5
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Yl,m(θ, φ). SSH satisfy Equation (2.3) on S2 = {x ∈ R3 : ‖x‖ = 1}.

(2.3) ∆Yl,m = l(l + 1)Yl,m,

where ∆ is a spherical Laplacian operator. This implies that SSH are eigenfunctions of the spherical

Laplacian on S2. We define the L2 inner product of two complex functions F and G defined on S2

to be

〈F,G〉 =

∫
S2
F (θ, φ)G∗(θ, φ) sin θdθdφ,

where g∗ denotes the complex conjugate of g. It is well-known that the SSH are orthonormal basis

functions of L2(S2), that is, the inner product of Yl,m and Yl′,m′ is 1 if l = l′,m = m′; otherwise

the value is 0. Therefore, any complex-valued functions, T (θ, φ), in L2(S2) can be expressed as a

linear combination of scalar spherical harmonics as

(2.4) T (θ, φ) =
∑
l,m

fl,mYl,m(θ, φ),

where

(2.5) fl,m =

∫
S2
T (θ, φ)Y ∗l,m(θ, φ) sin θdθdφ

and convergence holds in the L2(S2) sense. (Peter-Weyl Theorem for a sphere [34]). The complex

coefficient fl,m is referred to as a scalar spherical transform of the function T , and the coefficient

is calculated using the inner product of the function and SSH, 〈T, Yl,m〉, in Equation (2.5).

VSH are constructed from SSH by application of appropriate differential operators [18]. The

complex VSH functions defined on an annular shell consist of the triplets {Yl,m(θ, φ),Bl,m(r, θ, φ),

Cl,m(r, θ, φ)} where (r, θ, φ) is a point in a spherical shell. We express the basis elements of the

VSH basis in the spherical coordinate system by making use of the canonical basis vectors, namely,

(r̂, θ̂, φ̂), where (θ̂, φ̂) denote the canonical orthonormal basis vectors of the tangent space, and

r̂ denotes the unit normal vector, respectively, on the surface of the r-sphere S2(r) = {x ∈ R3 :

6
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Figure 2.1. Spherical coordinates system

‖x‖2 = r2}.

Yl,m(r, θ, φ) = Yl,m(θ, φ)r̂,(2.6)

Bl,m(r, θ, φ) = r∇Yl,m(θ, φ),(2.7)

Cl,m(r, θ, φ) = ~r ×∇Yl,m(θ, φ) = −r̂×Bl,m,(2.8)

where ~r is the position vector of the point with spherical coordinates. Yl,m are therefore seen as

forming a basis for the radial component of a vector field defined on an annular shell. Bl,m and

Cl,m are functions that form the basis of a vector field that is tangential to the r-sphere S2(r).

The set of VSH functions are orthogonal to each other with respect to the inner product of two

tangential vector fields, v and u, defined as

〈v,u〉 =

∫
S2

(vθuθ
∗

+ vφuφ
∗
) sin θdθdφ,

where any tangential vector field v is written with the tangential basis vectors as v = vθθ̂ +

vφφ̂, and uθ
∗

is a complex conjugate of uθ. The definitions of VSH, (2.6, 2.7, 2.8), along with

the relationships among the surface gradient and curl operators ensure orthogonality among the

functions Yl,m,Bl,m,Cl,m such as 〈Yl,m,Bl,m〉 = 0, 〈Yl,m,Cl,m〉 = 0, 〈Bl,m,Cl,m〉 = 0 for the same

degree l and order m. They are also orthogonal across pairs (l,m) 6= (l′,m′).

7
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The collection of tangential vector fields {Bl,m,Cl,m} for 1 ≤ l, |m| ≤ l forms a complete basis

of orthogonal functions in the space of all tangential vector fields defined on the r-sphere, for any

fixed r, which henceforth, we set to be 1 unless otherwise specified.

The set of VSH {Yl,m,Bl,m,Cl,m} has orthogonality and completeness as the SSH [2]. Any

vector field v(r, θ, φ) on S2 is expanded in terms of VSH.

(2.9) v(r, θ, φ) =

∞∑
l=0

l∑
m=−l

[
fRl,m(r)Yl,m(r, θ, φ) + fBl,m(r)Bl,m(r, θ, φ) + fCl,m(r)Cl,m(r, θ, φ)

]
,

where the complex coefficients {fRl,m(r), fBl,m(r), fCl,m(r)} are referred to as vector spherical trans-

forms. The coefficients are calculated as the inner products fRl,m(r) = 〈v,Yl,m〉 , fBl,m(r) = 〈v,Bl,m〉,

and fCl,m(r) = 〈v,Cl,m〉.

We connect the linear combinations of VSH on a sphere to the Helmholtz-Hodge decomposi-

tion [13]. The decomposition states that any vector field v is uniquely decomposed as a sum of a

divergence-free field, a curl-free field, and a harmonic component. The harmonic component van-

ishes on a closed space like on S2. The Helmholtz-Hodge decomposition implies that any tangential

vector field v on S2 is uniquely decomposed [14] as a sum of a curl-free field and a divergence-free

field. Specifically, a tangential vector field v defined on the unit sphere (r = 1) is expressed as a

linear combination of Bl,m and Cl,m such that

(2.10) v(θ, φ) =
∞∑
l=0

l∑
m=−l

[
fBl,mBl,m(θ, φ)︸ ︷︷ ︸

Curl-free

+ fCl,mCl,m(θ, φ)︸ ︷︷ ︸
Divergence-free

]
.

The curl of Bl,m and the divergence of Cl,m are zero on S2. The tangential vector field v is the

linear combination of the functions Bl,m represents the curl-free component of v, and that in terms

of Cl,m represents the divergence-free component of v (2.10). Thus, the VSH basis naturally yields

the Helmholtz-Hodge decomposition of a tangential vector field on a sphere. This means, such a

representation can be leveraged to model physical processes, such as geomagnetism, that are known

to admit physical constraints such as being curl-free or divergence-free. The tangential vector fields

with its curl-free field and divergence-free field are illustrated in Figure 2.2.

8
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(a) Tangential Vector Field = (b) Curl-Free Field + (c) Divergence-Free Field

Figure 2.2. Simulated Tangential Vector Field: 20x20 Equiangular grid, σ2B =
20, σ2C = 10, αB = 2, αC = 2, L = 9

2.2.2. Implementation of VSH. VSH are obtained from evaluations of SSH using a recur-

rence relationship. Kostelec et al. [29] describe how one can use the evaluations of SSH functions to

compute the vector spherical harmonic transforms. Our implementations of VSH basis computation

and the VSH transform of a tangential vector field are based on this work.

The recurrence relationship of associated Legendre polynomials yields the following equations.

Bl,m(θ, φ) =
1

sin θ

[(
c
(1)
l,mYl+1,m(θ, φ)− c(2)l,mYl−1,m(θ, φ)

)
θ̂ + ic

(3)
l,mYl,m(θ, φ)φ̂

]
,(2.11)

Cl,m(θ, φ) =
1

sin θ

[
ic

(3)
l,mYl,m(θ, φ)θ̂ −

(
c
(1)
l,mYl+1,m(θ, φ)− c(2)l,mYl−1,m(θ, φ)

)
φ̂
]
,(2.12)

where cl,m are normalizing constants with given l,m such that

c
(1)
l,m =

1√
l(l + 1)

l(l −m+ 1)

(2l + 1)

√
(2l + 1)

(2l + 3)

(l +m+ 1)

(l −m+ 1)
,(2.13)

c
(2)
l,m =

1√
l(l + 1)

(l + 1)(l +m)

(2l + 1)

√
(2l + 1)

(2l − 1)

(l −m)

(l +m)
,(2.14)

c
(3)
l,m =

m√
l(l + 1)

.(2.15)

VSH transforms can also be correspondingly derived from SSH transforms.

fBl,m = c
(1)
l,mg

θ
l+1,m − c

(2)
l,mg

θ
l−1,m − ic

(3)
l,mg

φ
l,m(2.16)

fCl,m = −ic(3)l,mg
θ
l,m − c

(1)
l,mg

φ
l+1,m + c

(2)
l,mg

φ
l−1,m(2.17)

9
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where gθl,m, g
φ
l,m are SSH transforms that can be calculated based on the inner product with each

components of the tangential vector field. gθl,m =
〈

1
sin θv

θ, Yl,m
〉
,gφl,m =

〈
1

sin θv
φ, Yl,m

〉
. After we

obtain the scalar spherical transforms {gθl,m, g
φ
l,m}, we can calculate the VSH transforms {fBl,m, fCl,m}.

Notice the recurrence relations (2.16) and (2.17) show that in order to compute the VSH coefficients

of v, one needs to compute the SSH coefficients of the coordinate fields vθ and vφ up to an additional

harmonic order beyond the maximum harmonic order of the VSH coefficients.

2.2.3. Evaluations of VSHs on an Equiangular Grid. The computations of VSH coef-

ficients can be enhanced by fast Fourier transforms on S2. Driscoll and Healy [8] developed an

effective algorithm for computing Fourier transforms on S2, which is a fast approach to computing

SSH transforms. Healy Jr. et al. [17] reformulated their algorithm to improve inverse transforms

and convolutions. The function, T (θ, φ) ∈ L2(S2) (2.4) is said to be band-limited with bandwidth

B ≥ 0 if fl,m = 0 for all l ≥ B, where fl,m = 〈T, Yl,m〉. For the band-limited functions, an equian-

gular grid sampling reduces the integrals (2.5) to finite weighted sums of the sampled data using

the Shannon’s Sampling Theorem (Theorem 1 [17]), so the integral can be computed using a dis-

crete weighted sum. Kostelec and Rockmore [30] propose S2kit, a C routine, to compute discrete

SSH transforms and their inverse transforms. We manipulate discrete VSH transforms and their

inverse transform functions in MATLAB based on the S2kit package by Kostelec and Rockmore [30].

We determine an equiangular grid based on bandwidth B, which corresponds with the maximum

degree of VSH. With bandwidth B, the 2B × 2B equiangular grid on S2 has (2B)2 points, and

the point (θj , φk) are defined by θj = π(2j + 1)/4B,φk = 2πk/2B, where j = 0, 1, . . . , 2B − 1

and k = 0, 1, . . . , 2B − 1. We extend the algorithm to compute VSH transforms and inverse VSH

transforms based on the relationships (2.11, 2.12, 2.16, 2.17).

2.3. Modeling VRFs on a Sphere

2.3.1. TVRF Model. We introduce a statistical model of VRFs on a sphere by using VSH.

Since SSH form a complete orthonormal basis for L2(S2), scalar random fields on a sphere can be

represented by linear combinations of SSH. Marinucci and Peccati [34] present a Gaussian isotropic

random field on a sphere based on its spectral representation in the SSH basis. The Gaussian

10
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isotropic random field, T = {T (x) : s = (θ, φ) ∈ S2}, has the following spectral representation:

(2.18) T (s) =
L∑
l=0

Tl(s) =
L∑
l=0

l∑
m=−l

fl,mYl,m(s),

where Tl(s) is the orthogonal projection of the process Tl in the SH subspace associated with the

l-th harmonic frequency, i.e., the subspace generated by {Yl,m : −l ≤ m ≤ l}, for each fixed l ≥ 0.

The SSH coefficients fl,m are complex-valued Gaussian random variables and independent across

both l and m (subject to conjugacy relationship for real-valued T ). The Gaussian isotropic random

field is a sum of L (it could be ∞) independent random processes.

The spectral representation (2.18) describes the scalar process T (·) on S2 as a random ef-

fects model. We extend this idea to construct a class of Gaussian tangential vector random field

(TVRFs) on S2 by utilizing the VSH basis introduced in Section 2.2. Accordingly, a TVRF on

S2 is expressed as a linear combination of the tangential VSH basis functions, {Bl,m,Cl,m}, with

random coefficients.

The proposed class of TVRF, referred to as Gaussian isotropic TVRF, {X(s) : s ∈ S2}, is a

tangential process on S2, with real coordinates, defined as

(2.19) X(s) =
L∑
l=1

l∑
m=−l

[
fBl,mBl,m(s) + fCl,mCl,m(s)

]
,

where the VSH coefficients, {fBl,m, fCl,m}, are complex Gaussian random variables and independent

across l. L is the highest degree of VSH.

The VSH coefficients have complex Gaussian distributions with a mean of 0 and variances

σ2B,l, σ
2
C,l. We denote fBl,m ∼ CN(0, σ2B,l), f

C
l,m ∼ CN(0, σ2C,l), which indicates

<(f †l,m) ∼ N(0, 12σ
2
†,l) m > 0

<(f †l,m) ∼ N(0, σ2†,l) m = 0

<(f †l,m) = (−1)|m|<(f †l,−m) m < 0

,


=(f †l,m) ∼ N(0, 12σ

2
†,l) m > 0

=(f †l,m) = 0 m = 0

=(f †l,m) = (−1)|m|+1=(f †l,−m) m < 0

,

where <(f †l,m) is a real part of f †l,m, and =(f †l,m) is an imaginary part, † ∈ {B,C}. The coefficients

satisfy the complex conjugate relationship, f †l,m = (−1)m{f †l,m}
∗.

11



www.manaraa.com

The random coefficients are independent across l, and for a fixed l, <(f †l,m) and =(f †l,m), are

iid across for all non-negative m. We introduce smoothness parameters, αB, αC for each field, such

that the variances of the random coefficients decrease as the degree (l) of VSH increases.

(2.20) σ2†,l = (
1

l
)α†σ2† , † ∈ {B,C}

The decay parameter is assumed to be greater than or equal to 1. When L = ∞, we set α ≥ 1 to

ensure a finite variance. With a finite L, α can be less than 1 and greater than 0. The algebraic

decays (2.20) indicate that the TVRFs can be formulated with finite L basis functions.

We assume that we observe bivariate data of the form y(si) = X(si)+εi, where the observational

noise εi is assumed to be i.i.d. N(0, τ2I2), with I2 denoting the 2 × 2 identity matrix. Therefore,

by using the conjugacy relationship among the coefficients of the TVRF X(s), we can express the

observations {y(si)}ni=1, in terms of real and imaginary parts of the bases {Bl,m,Cl,m}:

(2.21)

y(si) =
L∑
l=1

l∑
m=−l

[
{<(fBl,m)<(Bl,m(si))−=(fBl,m)=(Bl,m(si))}

+ {<(fCl,m)<(Cl,m(si))−=(fCl,m)=(Cl,m(si))}
]

+ εi.

The model equation in matrix form and its covariance structure are discussed in Subsection 2.3.2.

2.3.2. TVRF in Matrix Form. We denote the n observations on the TVRF by the 2n× 1

vector y = [yθ(si)1≤i≤n, y
φ(si)1≤i≤n]T , where yθ is the components of θ (co-latitude) direction and

yφ is the component of the φ (longitude) direction.

The TVRF model in the matrix form is thus expressed as

(2.22) y = Zf + ε,

where Z is a 2n× p matrix, including with evaluations of VSH at locations, si ∈ S2. f is a length p

vector of the random VSH coefficients. The number of the coefficients, p, depends on the maximum

12
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degree of VSH so that p = 2(L2 + 2L) + 2(L2 + L). The coefficient vector, f , is defined as follows:

(2.23)

f =
(
<(fB1,.),<(fB2,.), · · · <(fBL,.)︸ ︷︷ ︸

Real part of fBl,m

,=(fB1,.), · · · =(fBL,.)︸ ︷︷ ︸
Imaginary of fBl,m

,<(fC1,.), · · · <(fCL,.)︸ ︷︷ ︸
Real of fCl,m

,=(fC1,.), · · · ,=(fCL,.)︸ ︷︷ ︸
Imaginary of fCl,m

)T

where <(f †l,.) is the vector of real parts of [f †l,m]−l≤m≤l, and =(f †l,.) is the vector of imaginary parts

of [f †l,m]−l≤m<0,0<m≤l for a fixed l. Finally, ε is a 2n× 1 vector of noise terms with i.i.d. N(0, τ2)

coordinates.

Z consists of evaluations of VSH at locations {si}ni=1. The structure of Z is described as follows.

(2.24) Z =

<(Bθ
l,m) −=(Bθ

l,m) <(Cθ
l,m) −=(Cθ

l,m)

<(Bφ
l,m) −=(Bφ

l,m) <(Cφ
l,m) −=(Cφ

l,m)

 .

Bθ
l,m,C

θ
l,m are the θ components on the bases, and Bφ

l,m,C
φ
l,m are the φ components. The evaluations

of VSH for each l,m, are arranged in Z in accordance with the l,m order of f as defined in (2.23).

The vector y is normally distributed with a mean of 0 and variance V = ZGZT + τ2I2n where

G is a p× p covariance matrix of the random coefficient vector, f , and I2n is the 2n× 2n identity

matrix. G is a block matrix, and its diagonal blocks are the covariance matrices of the subvector

f †l of f , for † ∈ {B,C} and l = 1, 2, . . . , L.

(2.25)

G = diag

[[
V ar{<(fBl,.)}

]
1≤l≤L,

[
V ar{=(fBl,.)}

]
1≤l≤L,

[
V ar{<(fCl,.)}

]
1≤l≤L,

[
V ar{=(fCl,.)}

]
1≤l≤L

]
with each covariance matrix, V ar{<(f †l,.)}, V ar{=(f †l,.)} defined as

V ar{<(f †l,.)} =
1

2
σ2†,l(I2l+1 + J2l+1),

V ar{=(f †l,.)} =
1

2
σ2†,l(I2l + J2l),

and J2l+1 and J2l are defined as

J2l+1 = anti-diag[(−1)|l|, (−1)|l−1|, · · · , (−1)0, · · · , (−1)|l−1|, (−1)|l|],

J2l = anti-diag[(−1)|l+1|, (−1)|l|, · · · , (−1)|2|, (−1)|2|, · · · , (−1)|l|, (−1)|l+1|].

13
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Here, the anti-diagonal matrix anti-diag[a1, a2] =

 0 a1

a2 0

. The J matrices ensure the conju-

gate relationship that Cov{<(f †l,−m),<(f †l,m)} = (−1)|m|V ar{<(f †l,m)}, Cov{=(f †l,−m),=(f †l,m)} =

(−1)|m+1|V ar{=(f †l,m)}.

We also model the variance parameters σ2†,l, † ∈ {B,C} as follows:

(2.26) σ2†,l = σ2† l
−α† , † ∈ {B,C},

where αB, αC ≥ 0, and σ2B, σ
2
C > 0. Notice that if L =∞, then in order for the process X to have

finite variance, we must have αB > 1 and αC > 1. The parameters (αB, αC) control the smoothness

of the process since a relatively large value of these parameters implies that only the VSH functions

with corresponding to small frequency index l plays a dominant role in the description of the

process.

2.3.3. Dependency: Cross-correlation between Random Coefficients. We introduce

dependencies between random coefficients of curl-free fields and divergence-free components of the

TVRF X(·) by introducing correlation among the coefficients in the VSH representation. For a

fixed l, we impose a correlation, ρl = corr(fBl,m, f
C
l,m) for |m| ≤ l. In the dependent case, let Gr be

the covariance of random coefficients. Then Vr = ZGrZ
T + τ2I2n is the covariance matrix of the

observation vector y. The covariance matrix, Gr, is defined as

Gr =

 GB GB,C

GC,B GC

 ,

where

G† = diag
[[
V ar{<(f †l,.)}]1≤l≤L, [V ar{=(f †l,.)}

]
1≤l≤L

]
,

GB,C = diag
[[
Cov{<(fBl,.),<(fCl,.)}

]
1≤l≤L,

[
Cov{=(fBl,.),=(fCl,.)}

]
1≤l≤L

]
,

= {GC,B}T

14
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with

Cov{<(fBl,.),<(fCl,.)} =
1

2
ρlσB,lσC,l(I2l+1 + J2l+1),

Cov{=(fBl,.),=(fCl,.)} =
1

2
ρlσB,lσC,l(I2l + J2l).

We additionally assume that ρl decreases as l increases. A particular choice is ρl = ρl−β, for

1 ≤ l ≤ Lρ, and ρl = 0 for l > Lρ, for some ρ ∈ (−1, 1), β ≥ 0 and Lρ ≤ L. β can be seen as a

smoothness parameter for the correlation.

2.3.4. Extension of the TVRF Model. We extend the stationary TVRF modeling to model

spatio-temporal data that arise in the context of geomagnetism, by relaxing the requirement that

the TVRF is componentwise isotropic. We also allow time dependencies among the random coef-

ficients, by assuming that the mean fo the (l,m)-th coefficient at time t, namely, E(f †l,m(t)) equals∑J
j=1 b

†
l,m,j(t)Bj(t), where {Bj(t)}Jj=1 is a collection of smooth, linearly independent function, de-

fined on the time domain. In the subsequent applications, we take {Bj(t)}Jj=1 to be a B-spline

basis. We define a scaling function, ϕ(s), to cope with an anisotropic process, multiplied to the

isotropic TRVF model, (2.19) (2.22), to transform into an anisotropic field, such that

(2.27) y = ϕ ⊗
(
Zf + ε

)
,

where ϕ = (ϕθ(si), ϕ
φ(si))

n
i=1 is a 2n×1 vector, and ⊗ denotes coordinatewise multiplication. The

covariance matrix can be updated to V = Φ(ZGZT + τ2I)Φ or Vr = Φ(ZGrZ
T + τ2I)Φ, where Φ

is the 2n× 2n diagonal matrix with the vector of diagonal elements being ϕ. The scaling functions

for the co-latitude (θ) or longitude (φ) directions can either be the same, i.e., ϕθ(si) = ϕφ(si), or

different, ϕθ(si) 6= ϕφ(si), depending on data features. We discuss the details and illustrate its

application to modeling Earth’s magnetic field in Section 2.6.

2.4. Statistical Estimation and Prediction

We describe the computation of the maximum likelihood estimate (MLE) of the model param-

eters and predictions for the proposed TVRF model. We discuss conditions for the consistency of

the MLEs and present confidence sets of the parameters based on the asymptotic behavior of the
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MLE, treating L, the maximum order of VSH (henceforth, referred to as model order), as known.

We discuss the selection of the model order L and the process smoothness parameters αB, αC , and

β by AIC, AICc, or BIC criteria.

2.4.1. Log-Likelihood Functions. We start with the construction of the log-likelihood func-

tion of TVRF on a sphere. We assume that we observe a spatio-temporal data set in which there

are nt observations at time t, where t = 1, · · · , T . At locations st,i = (θt,i, φt,i) ∈ S2, i = 1, · · · , nt,

we observe the noisy tangential vector field at time t as yt =
[
yt(st,1), yt(st,2), · · · , yt(st,nt)

]T
. yt

follows a Gaussian distribution with a mean of 0 and the covariance, Vt(θ) = ZtGZTt + τ2I2nt ,

where θ = [σ2B, σ
2
C , ρ, τ

2], by treating the model order L, and the decay parameters (αB, αC , β) as

known, or given. With an assumption of independence and identical distribution across time, the

log-likelihood of the observed data is

(2.28) `(θ) = −
∑T

t=1 nt
2

log(2π)− 1

2

T∑
t=1

[
log(|Vt(θ)|) + (yTt Vt(θ)−1yt)

]
.

The log-likelihood is simplified if the observations are located at identical positions across time t.

Then the number of observations per time period is the same, i.e, nt ≡ n, for all t. Zt, the matrix

of evaluations of VSH, at the locations are identical across time, so we set Z = Zt for all t. The

covariance matrix becomes V (θ) = ZGZT + τ2I2n. The log-likelihood of the observations of the

identical locations is

(2.29) `(θ) = −nT
2

log(2π)− 1

2

[
T · log

(
|V (θ)|

)
+ trace

(
V (θ)−1

T∑
t=1

yty
T
t

)]
.

Score Equations. The first and second derivatives of `(θ) (2.28), (2.29) with respect to each

parameter, are, for each time point t (suppressing the dependence on t), given by

∂`(θ)

∂θi
= −1

2
tr(V −1

∂V

∂θi
) +

1

2
yTV −1

∂V

∂θi
V −1y,

∂2`(θ)

∂θi∂θj
=

1

2
tr(V −1

∂V

∂θj
V −1

∂V

∂θi
)− 1

2
yTV −1

∂V

∂θi
V −1

∂V

∂θj
V −1y − 1

2
yTV −1

∂V

∂θj
V −1

∂V

∂θi
V −1y,

where θi ∈ θ, i, j = 1, 2, 3, 4, and θ = [θ1, θ2, θ3, θ4] = [σ2B, σ
2
C , ρ, τ

2].

The score functions and their derivatives are complicated functions involving inverses of large

dimensional matrices, and the solution of the score equation is not available in closed form. For this
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reason, we maximize the log-likelihood function through numerical optimization in order to find

MLEs. We conduct the optimization using the Nelder-Mead method for σ2B, σ
2
C , τ

2 and the BFGS

quasi-Newton method with a box constraint for ρ, which is implemented by using the optim()

function in R.

2.4.2. Initial Values for Optimization of the Likelihood. Good initial values for opti-

mization enhance the accuracy of estimates and reduce their computational cost. Utilizing our

model assumptions, we develop a method for finding good initial values for parameters for maxi-

mizing the log-likelihood function.

Variances of Random Coefficients. The framework of obtaining initial estimators of the vari-

ances of the random coefficients is derived from the calculation of sample variances. This method

requires the VSH coefficients to be known beforehand. The VSH coefficients are calculated using

the normal equation f̂ = (ZTZ)−1ZTy or discrete VSH transforms if the observations are on an

equiangular grid.

We denote the initial estimator as σ2†,ini for σ2† , for a given smoothness parameters, α† (2.20).

We start to compute the initial estimator of lth frequency variance, σ2†,l,ini, l = 1, 2, · · · , L, as

follows.

(2.30) σ2†,l,ini =
1

2l

∑
0≤|m|≤l

(
<(f̂ †l,m)−<(f

†
l,·)
)2

+
1

2l − 1

∑
1≤|m|≤l

(
=(f̂ †l,m)−=(f

†
l,·)
)2
,

where f
†
l,· is the arithmetic mean of f̂ †l,m. Given the smoothness parameter, we express σ2†,ini the

form of σ2†,l,ini.

(2.31) Lσ2†,ini =
L∑
l=1

lα†σ2†,l,ini.

If α† is known, we can use Equation (2.31) to obtain the initial estimators, σ2†,ini.

(2.32) σ2†,ini =
1

L

L∑
l=1

σ2†,l,inil
α† .

17
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Alternatively, we may use linear regression, after noticing the following linear relationship after a

logarithmic transformation of σ2†,l.

(2.33) log σ2†,l,ini = log σ2†,ini − α† log l, where l = 2, 3, · · · , L

The regression method is implemented by using the regression model (2.33) with log l as the

explanatory variable and log σ2†,l,ini as the response variable, and we exclude first few l, (here l = 1).

The exponential of the estimated intercept is chosen to be our initial estimate, σ2†,ini and the slope

suggests a crude estimate of the smoothness parameter, α† for † ∈ {B,C}.

Correlation between Random Coefficients. We define the correlation ρl = corr(fBl,m, f
C
l,m), l =

1, 2, · · · , Lρ with the decay parameter β as ρl = ρl−β. We express ρ as a weighted sum of ρl.

(2.34) Lρini =

Lρ∑
l=1

lβρl,ini

We calculate ρl,ini from empirical correlations from estimated fBl,m, f
C
l,m. If β is known, we can

use (2.34) directly to obtain the initial estimate ρini. Alternatively, we may use the linear regression

of log |ρl,ini| on log l, (in analogy with the regression model (2.33)) to obtain the initial estimate of

|ρ|, namely, |ρini| as the exponential of the intercept, and a crude estimate of β as the negative of

the slope. The sign of ρini is chosen as sign(
∑Lρ

l=1 l
β̂ρl,ini).

Variances of Random Errors. We use the variance of residuals as an initial estimator for τ2,

where the residuals are defined as e = y − ŷ = y − Z(ZTZ)−1ZTy. Accordingly, the initial

estimator, τ2ini, is V ar(e). If observations are on an equiangular grid, we use the structure of the

grid. Let y(sc) be an observation located at a “center location” sc, and y(sn(c)) be the observation

at a randomly chosen location sn(c) among the neighboring locations of the center point. The initial

estimator is derived from the relationship that V ar{y(sc)−y(sn(c))} ≥ 2τ2. Using this lower bound,

and assuming a reasonably dense sampling scheme, we contend that half of the estimated variance

V ar{y(sc)− y(sn(c))} would be a meaningful initial estimator for τ2. Given a 20× 20 equiangular

grid, we have 36 of pairs, (y(sc), y(sn(c))), excluding selections from one of the two boundaries,

(θi, φ20), (θ20, φi), i = 1, · · · , 20, in order to prevent duplicate selections.
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As an alternative, the estimation method of noise variance in the context of two-dimensional

signal processing by Hall et al. [16] can also be used to obtain an initial estimate on an equiangular

grid. We apply this method by selecting 2× 2 squares in the grid and use the mean of the squared

weight sum of observations over each square as an initial estimate. The weights on the nodes of the

squares are (−3a, a, a, a), where a = 12−1/2. The resulting τ̂2ini can be seen as the variance of the

residuals based on an implicit prediction scheme of the observation y at the corner of each square,

based on the data at the neighboring nodes of the squares.

2.4.3. Selections of L and Smoothness Parameters. The optimization of likelihood can-

not be used effectively to determine the model order L and Lρ. Maximization of likelihood also

does not provide very accurate estimates of the smoothness parameters, {αB, αC , β}, unless the

sample size is quite large. Thus, we treat the selection of L as a model selection problem. Further-

more, due to limited sensitivity of the likelihood to the smoothness parameters, we estimate them

separately, while keeping their values fixed in the maximization of the likelihood with respect to

θ = (σ2B, σ
2
C , ρ, τ

2). We evaluate the Akaike information criterion (AIC), corrected AIC (AICc),

and Bayesian Information criterion (BIC), and compare the predicted mean squared error (PMSE,

out-of-sample errors) to select L after obtaining the MLEs of θ for different values of the model

order L. All methods recommend a reasonable L in our isotropic simulations, and BIC and PMSE

recommend a reasonable L in anisotropic simulations in Section 2.5.

As we indicated earlier, the smoothness parameters control the contributions of the VSH basis

functions corresponding to different harmonic frequency l to the overall fluctuation of the TVRF.

A larger α indicates that the first few VSH are dominant, and the process is very smooth. The

smoothness with the deterministic model helps predictions. However, due to limited sensitivity

of the process to the changes in the smoothness parameter value, over a fairly wide range, the

smoothness parameters are inherently difficult to estimate based on a limited amount of data. We

compute PMSE against different smoothness parameters and compare the results with one of the

true parameters in the simulated data set. The profiles of PMSE against α, including the true

parameters, are flat, which reinforces the point that identifying α is a challenge. A smaller α

implies many fluctuations across more l, and it produces difficulties in predicting the model. We
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either use crude estimates of the smoothness parameters using the regression method (2.33) or by

eye-balling of the plots the coefficients σ2†,l,ini against l to judge the decay ratio.

2.4.4. Asymptotic Property of MLEs. Here we briefly indicate the conditions under which

the MLE of the parameter θ is consistent as the model order, L, increases to infinity. We denote

the true parameters as θ0 = (σ2B, σ
2
C , ρ, τ

2). We assume the smoothness parameters αB, αC and β

are fixed.

When T = 1, N = 2n, the log-likelihood equation (2.28) becomes

(2.35) `(θ) = −N
2

log(2π)− 1

2

[
log(|ZG(θ)ZT + τ2IN |) + yT (ZG(θ)ZT + τ2IN )−1y

]
.

Using the theory of linear random effects modeling, we can show that, under appropriate regularity

conditions, the MLE is consistent and asymptotically normal with the asymptotic covariance which

is the inverse of the Fisher information. The key regularity condition needed to prove this result

is the increasing denseness of the sampling design, as L→∞ slowly with n. For i.i.d. realizations

of the process observed across times t = 1, . . . , T , in order to prove consistency, it suffices to have

T →∞ together with L→∞, as long as the observation locations across times are independently

and randomly distributed on S2. If the data are on a regular grid for all time points, then we still

need the grid size to increase to infinity with L, while T may even be bounded.

2.4.5. Predictions of the TVRF. We predict the tangential vector field by making use of

the theory of linear mixed models. Specifically, we predict the TVRF at any new location by its

Best Linear Unbiased Predictor (BLUP). The BLUPs, ỹnew, of new locations given the observed

locations are defined as

(2.36) ỹnew = E(Znewf |yold) = ZnewĜZToldV(θ̂)
−1

yold,

where V(θ̂) = ZoldĜZTold + τ̂2I. Zold are the VSH evaluations of the observed locations, and Znew

are the evaluations of the new locations.

2.4.6. Confidence Set. We construct confidence sets by combining the asymptotic theory and

parametric bootstrap sampling. The asymptotic theory suggests a confidence set for the parameter
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θ by making use of asymptotic distribution of the following Wilks-type statistics,

(θ̂ − θ)T (σ2(θ̂))−1(θ̂ − θ) ∼ p(n− 1)

n− p
Fp,n−p,

where θ̂ is the MLE for θ and σ2(θ̂) is the asymptotic variance of θ̂. Since σ2(θ̂) is not available

in closed form, and even its approximation involves high-dimensional matrix inversions, as an

alternative, we adopt a parametric bootstrapping approach. We simulate bootstrap samples from

estimated distributions using the MLE θ̂ as the true parameter. Let θ̂∗ be the MLE from the

bootstrapped data. Using the asymptotic theory of Wilks-type statistics, we may construct the

bootstrap confidence set for θ as

(θ̂∗ − θ̂)T
(
σ̂2(θ̂)

)−1
(θ̂∗ − θ̂) ≤ p(n− 1)

n− p
Fp,n−p(1− α).

Then we define the (1− α)100% level confidence set for the different coordinates of θ as

(2.37) θi ∈
[
θ̂i −

√
q∗1−α · σ̂(θ̂)i, θ̂i +

√
q∗1−α · σ̂(θ̂)i

]
,

where q∗1−α = p(n−1)
n−p Fp,n−p(1−α). σ̂2(θ̂) is the sample covariance matrix of the bootstrap estimates

and σ̂2(θ̂)i is ith diagonal element of the sample covariance matrix. We consider the bias-corrected

and acceleration bootstrap (BCa) confidence interval [9]. If we create a confidence interval for a

single parameter θi, the (1−α)100% confidence interval is θi ∈
[
θ̂i−z(α/2)σ̂i, θ̂i+z(1−α/2)σ̂i

]
, where

σ̂ is the standard deviation of the estimator θ̂i. z
(α) is the 100 · α percentile point of a standard

normal variate. Under some regularly conditions, we set the correct (1−α)100% confidence interval

for θ as

(2.38) θi ∈
[
F̂−1(Φ(z[α/2])), F̂−1(Φ(z[1− α/2]))

]
,

where Φ denotes the standard normal cdf and F̂−1(α) is the 100 · α percentile of bootstrap CDF,

F̂ (s) = Prθ{θ̂∗ < s}. z[α] = z0 + z0+z(α)

1−a(z0+z(α))
The bias-correction constant z0 is z0 = Φ−1(F̂ (θ̂)).

The acceleration constant a is a = 1
6

[ µ3(X)

µ2(X)3/2

]
= 1

6

[ E[(X−µ)3]
E[(X−µ)2]3/2

]
.

The other approach to building confidence intervals is using the percentiles directly from the

bootstrap replicates. Given B bootstrap replicates of θ̂, we define the (1−α) level of the confidence
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interval as

(2.39) θi ∈
[
θ̂i
∗
(α/2·B), θ̂i

∗
((1−α/2)·B)

]
,

where θ̂i
∗
(j) is jth position when we arrange the bootstrap estimates of θi in ascending order.

We demonstrate the construction of confidence intervals in Section 2.5.

2.5. Simulation Studies

In this section, we conduct numerical studies to illustrate the estimation, model selection and

prediction performances of the TVRF. We explore how sample size and L are connected to the

estimation performance and examine model selection methods. We consider the extended TVRF

model with a non-zero and possibly time-varying mean field and axially symmetric variance profiles

for the different components of the random field.

2.5.1. Setting. We first consider the Gaussian isotropic TVRF models with fBl,m ∼ CN(0, σ2B),

fCl,m ∼ CN(0, σ2C), and ε ∼ N(0, τ2). We set its parameters σ2B = 20, σ2C = 10, τ2 = 0.01 with fixed

smoothness parameters αB = 2, αC = 2. The observation, y(si) at location si ∈ S2 is as follows.

(2.40) y(si) =

L∑
l=1

l∑
m=−l

{
fBl,mBl,m(si) + fCl,mCl,m(si)

}
+ εi, where i = 1, 2, · · · , n.

The locations si ∈ S2 are randomly selected or on an equiangular grid. The locations si ≡ (θj , φk)

are on the 2B × 2B equiangular grid defined as θj = π(2j + 1)/4B,φk = 2πk/2B, where j, k =

0, 1, · · · , 2B − 1 with a given bandwidth B. Nyquist-Shannon sampling theorem for a sphere [29]

suggests that the maximum L is equal to B in the discrete SSH transforms. The VSH transform

requires one higher harmonic frequency for the associated SSH transforms, so the maximum har-

monic frequency for the associated L for VSH is B− 1 on the 2B× 2B grid resulting in n = (2B)2

locations indexed by the pairs (θj , φk). We use L = 9 and the sample size is 400 for the equian-

gular grid. For comparison, we also consider a random design with the same number of points.

For random locations, we choose n pairs, (vi, ui) from a uniform distribution with minimum 0 and

maximum 1 separately and converted the pair to locations, (θi, φi), in spherical coordinates where
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θi = arccos(2vi − 1), φi = 2πui. The configuration of points plays an important role in our model

fitting because it is based on evaluations of VSH at the locations.

We use 500 replicates of the isotropic TVRFs on identical locations for performance evaluation.

2.5.2. Independent Cases.

Sample Size and L. We investigate what sample sizes are required for the maximum degree of

VSH based on the sampling theorem to estimate the parameter properly. We consider the cases at

L = 9 or L = 19 with equiangular locations or random locations, with the corresponding sample

sizes being 400 or 1600. We estimate parameters with known L and αB, αC . The summary statistics

of the estimation are given in Table 2.1. For the equiangular grid, the spread of estimates is centered

at the true values of the parameters, and a larger sample size produces a smaller dispersion. For

the case of randomly distributed locations, the performance of the estimates is more dependent on

sample size. The results of the estimation over the data set generated by L = 19 and n = 400

random locations produce biased and highly variable outcomes, though the results over the data

set generated by L = 19 and n = 1600 random locations result in estimates close to the true

parameters. This simulation study suggests that the maximum model order L should be specified

based on the available sample size n. As n increases, we can have more precise estimates when L

is known. There is no significant difference between the equiangular grid and random points if the

sample size satisfies the key condition of the Sampling Theorem: (n ≥ (2(L+ 1))2).

Estimation and Prediction. We simulate data from the model (2.40). We allow extensions of the

model to have nonzero mean fields and location-dependent variability of the random field modeled

by (2.27). We refer to the latter model as the anisotropic TVRF model, even though the form of

the anisotropy in (2.27) is rather specific, since the mean-centered filed is an isotropic TVRF except

for a pointwise multiplication by an axially symmetric non-negative function (standard deviation

profile, or scaling function) ϕ. We generate three cases: isotropic TVRF with a mean of zero,

isotropic TVRF with a mean of µ, and anisotropic TVRF with a mean of µ. The three TVRFs
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True σ2B = 20

Case L n Min. Q1 Median Mean Q3 Max.
Equiangular 9 400 12.639 17.533 19.373 19.268 20.947 27.332

Random 9 400 12.733 17.498 19.430 19.266 20.933 27.309
Equiangular 19 400 16.172 18.758 19.675 19.884 20.946 24.073

Random 19 400 29.839 75.354 89.086 90.101 103.781 134.116
Equiangular 19 1600 17.530 19.032 19.844 20.009 20.826 23.758

Random 19 1600 17.492 19.049 19.845 20.004 20.816 23.773

True σ2C = 10

Case L n Min. Q1 Median Mean Q3 Max.
Equiangular 9 400 6.302 9.141 10.349 10.134 11.141 14.431

Random 9 400 6.260 9.098 10.330 10.125 11.122 14.460
Equiangular 19 400 7.675 9.217 9.817 9.883 10.391 12.537

Random 19 400 21.140 65.858 79.463 81.012 93.014 125.712
Equiangular 19 1600 7.785 9.512 9.912 9.951 10.511 11.276

Random 19 1600 7.704 9.543 9.902 9.952 10.494 11.324

Table 2.1. Summary statistics of estimates (σ̂2B, σ̂
2
C): L is the maximum order of

VSH. n is the sample size.

that we consider for this simulation study are expressed as follows.

Y1(s) = y(s) + ε,(2.41)

Y2(s) = µ(s) + y(s) + ε,(2.42)

Y3(s) = µ(s) + ϕ(θ(s))
(
y(s) + ε

)
,(2.43)

where µ(s) is the mean at location s ∈ S2, y(s) is TVRF observation at s, and θ(s) denotes

the θ coordinate of the location s. Finally, ε’s are i.i.d Gaussian noise with zero mean and co-

ordinatewise variance τ2. We assume a fixed mean field represented in the VSH basis such that

µ(s) =
∑Lµ

l=1{h
B
l,mBl,m(s) + hCl,mCl,m(s)} where the maximum degree of VSH for the mean field

is 3 (Lµ = 3). The fixed coefficients, {hBl,m, hCl,m}, are complex numbers and satisfy the conjugacy

relationship. TVRFs are generated with an identical setting from Equation (2.40), where the max-

imum degree of VSH is 9 (LR = 9). We allow a higher value of the model order LR (the subscript

R refers to the “residual field”, i.e., after subtracting off the mean) for the isotropic TVRF y than

the maximum degree Lµ for the mean field to reflect that residual fields have more fluctuations

than the mean field.
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Figure 2.3. Isotropic field with mean field: Top presents true fields, and bottom
presents fitted fields. VRF indicates isotropic TVRF. Y are observed fields Y2(s)

We link the mean field µ to the standard deviation profile ϕ in the description of the anisotropic

field given by (2.43) since this description is closely connected to our application on the Ørsted ge-

omagnetic data set. Accordingly, we model a scaling function, ϕ(θ), as
√∫

φ(µ(θ, φ)2)dφ separately

for each of the two canonical coordinate directions of the tangential vector field (θ = co-latitude, and

φ = longitude). Each ϕ(θ) is dependent on co-latitude (θ) only, so the anisotropic fields described

by (2.43) are axially symmetric.

We generate 500 replicates of the three models with 15 independent time periods (500 replicates

of 15 independent realizations of the processes at the same locations). In the µ ≡ 0 case, we

estimate TVRF parameters using maximum likelihood, based on the combined data set consisting

of 15 temporally independent realizations of the processes, treating smoothness parameters (αB =

αC = 2) and the model order for the TVRF LR as known, and evaluate the prediction performance.

In the cases of nonzero mean fields, µ(s), we fit the mean field first by least squares regression,

ignoring the correlation structures, and thereafter fit the parameters for the isotropic/anisotropic

TVRF model by using the data from the estimated mean-subtracted residual field. For estimation

of the mean field, we regress the observed data against the evaluation of VSH with given maximum

order Lµ = 3, and least squares estimates of the fixed coefficients, {hBl,m, hCl,m}. In the isotropic

case, we conduct TVRF modeling onto the residual fields, Y2(s) − µ̂(s). Figure 2.3 presents one

realization at a time instance for the isotropic field with the mean µ and compares the true field

with the fitted values of the field.
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Figure 2.4. Anisotropic field with mean field: True VRF refers to the pro-
cess y(s), and fitted VRF (i.e., the rescaled residual field) refers to the process
(Y (s)− µ̂(s))/ϕ̂(θ(s)). True VR-VRF means ϕ(θ(s))(y(s) + ε), and fitted VR-VRF
is ϕ̂(θ)ỹ(s), where ỹ(s) is the fitted value of the VRF y(s) using the fitted VRF as
the raw data.

In the anisotropic case, we compute an estimate of the scaling factor (by using the integral

formula for ϕ in terms of µ) based on the fitted mean field and divide the mean-subtracted residual

field location-wise by the estimated scaling factor in order to obtain the isotropic TVRF, i.e., we

use the data (Y3(s)− µ̂(s))/ϕ̂(θ(s)). Figure 2.4 shows the comparisons between the true fields and

the fitted fields. We observe some discrepancies in terms of the structures of the true and fitted

VRF, VR-VRF, and Y fields.

We compare the estimates and evaluate its mean squared errors (MSE, in-sample errors) and

predicted mean squared errors (PMSE, i.e., mean squared out-of-sample errors) in Figure 2.5. In

the isotropic cases, the estimates are unbiased, and both MSE and PMSE have fairly small values.

In the anisotropic cases, estimates for the variance σ2B and σ2C of the random components are

underestimated, and estimates for the variance τ2 of the random noise is overestimated. For the

anisotropic process, the scaling function ϕ is a functional of the mean field µ. The multiplicative

nature of the model mean that the estimation errors in µ̂ contributes significantly to the estimation

accuracy of the parameters of the isotropic TVRF y. To understand this effect, we consider an

additional simulation study where we generate 30 independent realization (corresponding to 30

time instances), rather than 15 in our previous setting. We notice that (see Figures 2.5 and 2.6
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Figure 2.5. m0 iso: mean zero and isotropic, mu iso: mean µ and isotropic,
mu aniso: mean µ and anisotropic, mu aniso2: mean µ and anisotropic (T = 30)

Figure 2.6. θ against Anisotropic function and estimated one. Fit15 indicates 15
independent observations of fields, and Fit30 is for 30 independent observations.

for the comparative performance), in this setting (i.e., T = 30), due to increased accuracy in the

estimation of µ, owing to twice as much as data as before, the accuracies of estimates and predictions

are improved. This suggests that, for an accurate estimation and prediction performance, obtaining

a more accurate estimate of the mean fields is critical.

Different Mean Magnitude. We also study how the magnitudes of the mean fields affect the

estimation and predictions in the anisotropic models, (2.43). We consider four different average

magnitudes of the mean fields, so that the average values of the scaling factor ϕ greater than, less
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Figure 2.7. Different Mean Magnitude against RPMSE in terms of MEAN,
VRF(y), Y fields in the anisotropic fields.

than, or close to 1. For comparison, we manipulate the isotropic fields in the identical parameter

settings.

The estimates are not affected by the magnitude of the mean fields. The estimates are dis-

tributed similarly with similar standard errors across different means. The magnitude effects are

found in terms of the in-sample and out-of-sample prediction errors. Whereas the errors for the

isotropic fields are roughly constant across the different magnitudes of the mean fields, the errors

in the anisotropic fields are proportional to the magnitude of the mean fields. We observe similar

levels of errors for the isotropic and anisotropic fields (Figure 2.8) in the case where the magnitude

is close to 1 (mu1). In the mu.5 case, i.e., when this magnitude is about 1/2, the error level for

the anisotropic fields is lower than the error level in the isotropic field, and, in the cases where the

magnitude is greater than 1 (mu2, mu4), the error levels for the anisotropic fields are greater than

that for the isotropic field. When we compare the errors in each field such as mean, y, VRF, and

Y , we observe that, for the anisotropic field, the errors in VRF tend to increase as the magnitude

of mean fields increases; see Figure 2.7. Interestingly, error levels of the y fields are constant across

the different means, so the errors from estimating mean fields contribute to the total error levels.

Different Variance Ratio against the Magnitude of Mean field. We have generated TVRFs with

the variances,σ2B = 20, σ2C = 10. We now study the case when the fluctuations of the TVRF

are more dominant than the mean fields. We investigate both isotropic and anisotropic cases.

The anisotropic case mimics our application to geomagnetic modeling. We examine how the ratio
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Figure 2.8. Mean multiplier against RPMSE: Each column, v multiplier, is the
multiplier of the variance components, and each row is the field.

between the magnitude of mean fields and the variance of random fields influences estimation and

predictions.

We have the mean fields with four different magnitudes and add two different sets of variances

for comparison with the previous study. The factors multiplying the original values of the variance

parameters are 1/10 (σ2B = 2, σ2C = 1) and 1/5 (σ2B = 4, σ2C = 2). The variance τ2 of the

unstructured noise remains unchanged.

The estimates and predictions follow the same pattern as that of the results from the study on

varying mean magnitudes. The variances of random components are underestimated in both the

isotropic and anisotropic fields. The variances of random errors are overestimated in the anisotropic

fields though the variance of random errors is unbiased in the isotropic fields (Figure 2.8). The

error levels increase as the magnitudes of the mean fields increase. The size of variance parameters

changes the standard errors of estimates, so a larger size of variance has the larger standard errors

of estimates. The absolute bias increases as the ratio increases; however, the relative bias remains

unchanged.

2.5.3. Iterative Weighted Least Squares. We have found the estimates of random vari-

ances are underestimated in the isotropic and anisotropic fields, whereas the variance of the noise

is overestimated in anisotropic fields. We conduct iterative weighted least squares for several steps
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to inspect whether the overestimation of τ2 and underestimation of random variances can be mit-

igated by having a more accurate estimate of the mean that takes into account the correlation

structure of the residual (TVRF) field. This is done by formulating the problem of estimation of µ

as a weighted least squares problem, where the weight matrix is determined by the inverse of the

current fit of the covariance of the random component. This gives rise to an iterative reweighted

least squares (RWLS) algorithm for estimation of µ and θ. The updating algorithm of RWLS is as

follows. Given kth estimates, µ̂(k), θ̂(k),

W (k) = M−1(θ̂(k), µ̂(k)),

µ̂(k+1) = arg min
µ

(Y − µ)TW (k)(Y − µ),

θ̂(k+1) = arg min
θ

(Y − µ̂(k+1))TW (k)(Y − µ̂(k+1)),

W (k+1) = M−1(θ̂(k+1), µ̂(k+1)),

where M , the covariance matrix of Y , is defined as ϕ(µ)V (θ)ϕ(µ) in the anisotropic case. In the

isotropic case, M is identical to V . The new estimated mean field µ̂ is equal toZ(ZTWZ)−1ZTWY .

We start with the estimates µ̂, θ̂ from the ordinary least squares and iterate the updating algorithm

for three times.

RWLS estimates in the isotropic fields are equivalent to the original estimates (OLS). For

anisotropic fields, RWLS improves over the OLS based estimation at the first update, and its pre-

diction errors are reduced; see Figure 2.9. No significant improvement in estimates and prediction

was observed from the second update onward.
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Figure 2.9. Results of RWLS in Anisotropic field.

2.5.4. Model Selection. Finding the appropriate model order, L, is formulated as a problem

of model selection. Notice that the models for increasing values of L are not “nested” since TVRF

model with a larger L does not include the models with a smaller L. We experiment to select

the proper L in the simulation data set. Let the true L be 9 and consider it as an unknown

parameter. We conduct TVRF modeling with different candidate values, L = 3, 7, 9, 19. The

results are presented in Figure 2.10.

When a smaller number of VSH basis functions are included the estimates of random variances,

σ2B, σ
2
C , are underestimated, and their standard errors are larger compared to the true L. The

estimates for the variance, τ2, are overestimates and also have larger standard errors. In this case,

due to the under-specification of L, a part of the fluctuations associated with the TVRF, which is

not captured by VSH, is clubbed with the unstructured noise. When more VSH bases are included,

the variances of random components are underestimated, and the variance of the random noise is

similar to the true variance. These results produce the smallest in-sample prediction errors, but

the out-of-sample errors are larger that for the true L, which indicates overfitting.

We evaluate model selection criteria such as AIC, AICc, and BIC. The three criteria suggest

selecting the maximum order of VSH to be 9, which is the truth, and the RPMSE is also the

smallest at L = 9.

The results are based on a 20×20 equiangular grid. We conduct the same experiments based on

1600 random locations, and the results agree with those corresponding to the equiangular design.

With a sufficient sample size for a certain L, random samples are suitable to estimate the model,
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although more computational time is required. An equiangular grid would be a superior choice for

modeling TVRFs for computational efficiency if it is applicable.

Figure 2.10. Predictive Performance: The simulation set is generated with L = 9
in 20 × 20 equiangular grid. Compare estimates with different L = 3, 7, 9, 19 at
Equiangular grid. The first row is estimation results, and the blue horizontal line
indicates the true parameters. Squared root mean squared error (RMSE) is defined

as (
∑n

i (yi − ỹi)2/n)1/2 (in-sample) and squared root predicted mean squared error
(RPMSE) is the prediction errors of observations at locations where are not used to
estimate parameters (out-of-sample).

32



www.manaraa.com

Figure 2.11. Comparing L = 9, 19 regarding estimated τ , squared root mean
squared error and squared root predicted mean squared error.

Model Selection: Anisotropic. We extend the model selection experiment to the anisotropic

models (2.43). In this simulation study, we focus on finding the maximum degree, Lµ, of VSH for

the mean fields rather than for LR, the TVRF. Accurate estimates of the mean fields are required

for reasonable estimation of the parameters for the anisotropic fields. We generate 15 independent

realizations in time for each replicate, which results in 15 independent observations at each location.

We set the true Lµ as 3, and the maximum order for the TVRF is set as 9. The variances of random

components are two sets, and the variance of random noise is one.

When the smaller maximum degree of VSH is used for fitting the model, the componentwise

variances are overestimated, and the corresponding standard errors are larger. When a larger

maximum order of VSH for the mean fields is assumed, the componentwise random variances are

underestimated, and the noise variance τ2 is overestimated. The prediction errors from the true

Lµ are the smallest among the candidates values.

The model selection criteria recommend a value close to the true Lµ, with some exceptions.

The percentages of times either AIC or AICc selects the correct model are approximately 53% each,

and that for the BIC is 55%, Figure 2.12. If we select the model based on the smallest PMSE, the

percentage of correct selection increases to 69%.

The behaviors of estimates and predictions are rather similar in both the cases of the smaller

componentwise variances set and the original componentwise variance set. Model selection per-

formance for the smaller componentwise variances tends to be better. AIC and AICs, select the

true Lµ in approximately 63% simulation runs, and BIC selects the true Lµ approximately 91% of
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Figure 2.12. Histogram of the criteria selections at true Lµ is 3.

times. The PMSE selects the true Lµ in 64% simulation runs. The use of RWLS does not lead to

a significant overall improvement over OLS in terms of model selection performance.

Guided by these simulations, we use BIC and the smallest PMSE as the two criteria for model

selection in our application.

Smoothness Parameters. We illustrate the impact of the choice of the smoothness parameters

(αB, αC) on model fitting and prediction in the context of the isotropic model through a simulation

study. We assume that smoothness parameters for curl-free and divergence-free fields are equal to α.

We estimate αB = αC = α by using a model selection criterion by searching over a range of candi-

date values for α. The results are in Figure 2.13. The variance estimates for random coefficients are

dependent on the smoothness parameters since according to our mode σ2†,l = l−α†σ2† , † ∈ {B,C}.

No matter what α is chosen, the estimate for the variance of random noise, τ2, is accurately es-

timated. MSE and PMSE for the true α are not obviously different from all other α† candidates.

This suggests a relative lack of sensitivity of the fitting results to the specification of α. When the

true α = 2 is given, the maximum value of the log-likelihood and the minimum of AIC, AICc, and

BIC are mostly attained, which suggests that, despite the relative lack of sensitivity, AIC, AICc,

and BIC could be suitable criteria for selecting α.
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Figure 2.13. Experiment of the involving the smoothness parameter α† for data
on (20× 20) and (40× 40) equiangular grids. The true α† is 2. Estimates of σ2B, σ

2
C

are dependent on α† candidates, but the estimates of τ2 are not sensitive to α†.

Figure 2.14. Selection by AIC: The true α† is most selected. If α† is incorrectly
chosen, the estimation is far from the true values.
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2.5.4.1. Construct Confidence Sets. We demonstrate the construction of the parametric boot-

strap confidence sets based on the estimates σ̂2B, σ̂
2
C , τ̂

2 in the setting where data comes from a zero

mean isotropic TVRF process observed on a 20 × 20 equiangular grid. We generate parametric

bootstrap samples y∗ using the MLE of the parameters as the truth and fit the Gaussian TVRF

model to find bootstrap estimates θ∗. We have 1500 bootstrap samples (B = 1500) of each set of

MLEs; see Figure 2.15.

2.5.5. Dependent Case. We also study the case when curl-free fields and divergence-free

fields are dependent. As per our modeling scheme, for the TVRF model given by (2.40), we

Figure 2.15. Bootstrap sample distribution of an independent MLEs. The dotted
black line is MLE. The solid line is the parameter. Other Vertical lines indicate the
95% CI methods. (Red: Percentile CI, Brown: Percentile with the bias-corrected
bootstrap (BCa) method, Blue: Asymptotic)

Figure 2.16. 100 of 95% confidence intervals for TVRF parameters (Independence
case). Each row is for each parameter, and each column for the methods. Green
color indicates having true parameters, and red not having the true value. The
intervals are arranged by in order of the estimates.
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Figure 2.17. Cross-Correlation: The blue line indicates the true parameters. The
selected estimates are closed to the true value when the true L is given. The L can
be selected by AIC.

additionally assign a cross-correlation between the two component fields as ρl = 0.751(l≤9). In

terms of the general model description, this corresponds to ρ = 0.75, Lρ = 9 and β = 0. We select

Lρ = L while estimating the parameters. To be more elaborate, the cross-correlation for each l is

identical and exists up to the maximum harmonic frequency (model order) L.

We apply the regression method described in Section 2.4 to obtain initial estimates for σ2B, σ
2
C ,

and ρ. We then use a quasi-Newton method with box constraints to obtain the MLE of σ2B, σ
2
C , τ

2,

and ρ. We calculate the corresponding values of the log-likelihood, AIC, RMSE, and RPMSE.

We present the results in Figure 2.17. At the true L = 9, all parameters are estimated to be

close to the true value, and the corresponding AIC, RMSE, and RPMSE are lowest among all L

values. The qualitative behaviors of the estimates of σB, σ2C , and τ2 are similar to those in the

independent case. The estimated correlation coefficient ρ is seemingly unbiased at smaller or true L,

while the standard error of the estimate increases for smaller L. At a larger L, the cross-correlation

is underestimated.

Importance of introducing cross-correlation. The cross-correlation helps to understand the TVRF

and relationship between curl-free and divergence-free fields. In the equation of VSH, we have

Bθ
l,m = −Cφ

l,m,B
φ
l,m = Cθ

l,m. The observed field Y is expressed as Y = Zf + ε. If we pull out the
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random effect parts for each directions, we derive the following.

Z(si)f =
∑
l,m

{
fBl,mBl,m(si) + fCl,mCl,m(si)

}
=
∑
l,m

{
fBl,mBθ

l,m(si)θ̂ + fBl,mBφ
l,m(si)φ̂+ fCl,mCθ

l,m(si)θ̂ + fCl,mCφ
l,m(si)φ̂

}
=
∑
l,m

fBl,mBθ
l,m(si)︸ ︷︷ ︸

B theta

θ̂ +
∑
l,m

fBl,mBφ
l,m(si)︸ ︷︷ ︸

B phi

φ̂+
∑
l,m

fCl,mCθ
l,m(si)︸ ︷︷ ︸

C theta

θ̂ +
∑
l,m

fCl,mCφ
l,m(si)︸ ︷︷ ︸

C phi

φ̂

In Figure 2.18, different directional components in the component (B or C) fields exhibit strong

linear relationships as the corss-correlations increase (bottom-left: B theta vs C phi, top-right:

Blm theta vs Clm phi plot). Identical directional components in the component fields do not

exhibit any effects from the cross-correlations (top-left: B theta vs C theta, bottom-right: Blm phi

vs Clm phi plot).

Estimates of the componentwise variances σ2B and σ2C are influenced by the cross-correlation,

especially when ρ is either −1 or +1, and the estimates show positive associations, in Figure 2.19.

When the value of |ρ| is less extreme (≤ 0.75 in our simulations), the estimates are very mildly

affected.
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Figure 2.18. Plots the different components of the TVRF for varying ρ. Each
panel corresponds to one value of the cross-correlation. When we have small or no
cross-correlation, the two components do not exhibit a linear relationship. When
the cross-correlation is strong, the plots exhibit a linear relationships between the
component. Note only 50 replicates are plotted here, Bl,m vs Cl,m at l = 9,m ≥ 0.
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Figure 2.19. σ̂2B vs. σ̂2C : 500 replicates for each true ρ. It exhibits positive linear
relationships between the two estimates. The estimates are influenced by the value
of ρ. Blue line indicates the contour plot of the joint density of (σ̂2B, σ̂

2
C), and the

intersection of the dotted lines indicates the true parameters.
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2.6. Analysis of Satellite-Based Measurements on Earth’s Magnetic Field

We illustrate the application of the proposed anisotropic TVRF model to Earth’s magnetic field

modeling based on Ørsted satellite survey data. We summarize current internal geomagnetic field

models that are built upon the specification of a potential field, and we show that the proposed

model leads to improvement in fitting and prediction performance over some competing methods.

2.6.1. Earth’s Magnetic Field Modeling. Researchers have actively studied the problem

of modeling Earth’s magnetic fields – so-called geomagnetic fields. The geomagnetic field models are

used to produce maps, which include extrapolation of the fields that cannot be measured directly,

and they form the foundation for the geophysical interpretation of the geomagnetic fields. The

measurements of the geomagnetic fields from observatory stations on the ground or from satellites

form the different sources of data for modeling this physical process. The sources have different

physical characteristics, so researchers determine the contribution of each source in appropriate

ways to produce the geomagnetic field models. Depending on the contributions of sources, the

geomagnetic fields are distinguished into internal fields and external fields such as ionospheric,

magnetospheric, and Earth-induced fields. One of the major scientific challenges is the sophisticated

separation of the various fields produced using the sources based on geomagnetic field observations,

which requires adequate mathematical representations of the fields [40].

The internal fields, derived from Earth’s core and crust, are more than 90% of the geomagnetic

measurements and often referred to as the main field. The main magnetic fields (B) can be described

by mathematical models as the gradients of a scalar potential V [32].

(2.44) B = −∇V (r, θ, φ)

The potential field V appearing in (2.44) is a scalar harmonic function, that is, it satisfies the

Laplace equation ∇2V = 0. Hence the resulting vector field B is divergence-free: ∇ · B = 0.

Moreover, by Ampere’s Law, in the absence of an external electrical field, the field B = 0 is also

curl-free, i.e., ∇×B = 0. In the transitional geomagnetic modeling approach, the scalar potential

V is expanded in the SSH basis, and the set of harmonic coefficients of SSH are the parameters

of interest (so-called “Gauss coefficients”) in the geomagnetic field models. The World Magnetic
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Model POMME-
10[35] [36]

WMM [6] CM5 [43] OIFM[39] IGRF-12
[12]

CHAOS-
6[11]

Year 2017 2010-2015 2015 2000 2014 2016
Model
Type

Combined
Model

Main Field Combined
Model

Main
Field

Main
Field

Main
Field

Max SH 133 12 120 (20) 19 13 20
Data Ørsted,

CHAMP,
SAC-C

CHAMP,
Ørsted, Ob-
servatory
data

Ørsted,
CHAMP,
SAC-C,
Observa-
tory hourly
means

Ørsted Ørsted,
CHAMP,
SAC-C,
Swarm

Ørsted,
CHAMP,
SAC-C,
Swarm

Model Es-
timation

Gauss coeffi-
cient is given
as a trun-
cated Talyor
expansion
g(t) = g +
tg′ + 0.5t2g′′

Least
Squares
via eigen-
vectors and
eigenvalues
of the nor-
mal equation
with no reg-
ularization

Iterative
reweighted
least square

Least
Squares in
the appli-
cation of
iterative
Gauss-
Newton
with linear
constraints

Iterative
reweighted
least
square

Iterative
reweighted
least
square

Iterative
reweighted
least
square

Table 2.2. Current Available Geomagnetic Models

Model (WMM [6]), International Geomagnetic Reference Field (IGRF-12 [12]) and CHAOS-6 [11]

are some of the currently available models for the main geomagnetic field; see Table 2.2 for a

comparative summary of these models.

As a further elaboration of this modeling paradigm, the potential field V , defined within an

annular shell, is expressed in the spherical coordinate system ((r, θ, φ) [32]) as

V (r, θ, φ) = a

Lint∑
l=1

(a
r

)l+1
l∑

m=0

(gml cos(mφ) + hml sin(mφ))Pml (cos θ), r ≤ a,(2.45)

where a is a lower shell (Earth) radius and gml , h
m
l are the Gaussian coefficients. Pml (cos θ) is the

Schmidt quasi-normalized associated Legendre function with order l and frequency m.
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The currently available models use equation (2.45) with the assumption that the main fields

are curl-free. They have additional extensions or assumptions and different modeling procedures

and additional extensions or assumptions, several of which are presented in Table 2.2. Maus et al.

[35] [36] developed the model POMME-10 which adopts a sequential approach, conducting data

selection, data correction and model fitting sequentially. In this approach, the parameters are

separated into groups and sequentially fitted via least squares. Comprehensive Model 5 (CM 5),

by Sabaka et al. [43] describes the near-Earth magnetic field. CM 5 parameterizes an empirical

inverse model derived from data. The comprehensive inversion method is based on an approach to

deriving field models in which the major magnetic field sources are parametrized and co-estimated

via least squares. The models are sophisticated and built to describe the physical behaviors of the

geomagnetic fields.

In a recent model, CHAOS, [41],[11], {gml (t), hml (t)} are time-dependent Gauss coefficients that

are modeled using a sixth-order B-spline, i.e., for a 6-th order B-spline basis {Bj}Jj=1, the coefficients

gml (t) is expressed as

gml (t) =

J∑
j=1

gml,jBj(t)

and similarly for {hml (t)}. These researchers use a six-month knots spacing with five-fold repeated

knots at the endpoints t = 1997.1 and t = 2016.6.

2.6.2. Ørsted Satellite. Before we illustrate our modeling applications to the geomagnetic

field observations by satellites, we give a descriptive summary of the features of satellite-based

measurements and their variability characteristics, which in incorporate in our model for the ob-

servations. The satellite data offer a dense coverage of the earth, except near the poles. The

observations are collected while the satellites orbit the earth, so it is difficult to isolate the sources

of variations in the measurements across, as to whether they are due to the location or the time

changes – which is referred to as a time-aliasing effect. The satellites also travel through electrical

plasma-filled space, and the existence of electric currents at the satellite altitude implies that, it

may not be appropriate to describe the observed field as the gradient of a harmonic potential, as

in (2.44) (see [40] for details).
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Because of the issues mentioned above, if we are interested in modeling only the horizontal

component of the magnetic field, it is better not to impose too stringent a structural constraint (as

in (2.44)) on the observed vector field. The TVRF model, and its anisotropic extensions, provide the

flexibility as well as interpretability needed to model the fluctuations of such fields. Accordingly,

treating the observed data as a spatio-temporal vector field measured at a fixed altitude (the

latter is an approximation), we apply the proposed methodology to the Ørsted Satellite data set.

The Ørsted satellite was launched on February 23, 1999, and one of its missions is to map the

geomagnetic fields [19]. We obtain high precision magnetic field data (Ørsted Prelim Mag-L) 1,

such as time, satellite position vectors, Magnetic Field Magnitude, and Magnetic field vectors.

Orbit Trajectory. We take samples from the trajectories of the Ørsted satellite measurements,

which allows us to examine and rectify for the time aliasing effect. We define a trajctory as an

orbit from the north pole back to the north pole. The satellite needs to traverses 101 trajectories

to cover the surface of the earth, so as to reach the original position (approximately) and the total

time span of these 101 trajectories is approximately a week. We focus our analysis on the 15 such

time spans covering the period from January 2001 to April 2001. We observe that each trajectory

has its own characteristics our preliminary descriptive statistical analysis suggests that conducting

sampling along the trajectories is recommended. We conduct functional data analysis on the

geomagnetic observations against longitude, treating data along similar trajectories (observed after

a fixed time interval), as functional observations, and verify the time dependency of the observed

field. We further investigate this time dependency by examining the auto-correlation coefficients

of the functional principal components scores. We observed a mild time dependency, so we model

the time dependency by absorbing all the temporal variation in the mean field, by modeling the

VSH coefficients of the mean field as smooth time-varying functions (see (2.50)).

2.6.2.1. Fluctuations. The random fluctuations of the raw Ørsted satellite data are anisotropic [21].

The fluctuations are caused by only one sensor location on Ørsted satellites to collect vector data,

and it varies according to the altitude of the satellite. It is known that the uncertainty of the

random fluctuations is related to the magnitudes of the components [20]. We use this information

to model the variance of the random fluctuation based on the magnitude of the mean fields. The

1The data sets are available to the public at DTU space website. https://www.space.dtu.dk/english/research/

scientific_data_and_models/magnetic_satellites
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Figure 2.20. Plots of latitude (θ) and longitude(φ) against each component of B.
Each panel indicates a different set of trajectories, and different colors correspond
to different time periods.

magnitudes of the mean fields change with latitude (θ) and increase to the south pole from the

north pole. The observed relationship between the variance and the mean field can be written as

follows:

(2.46) V ar(ỹ(θi, φi, t)) ∝
∫
|µ(θi, φ, t)|2dφ,

where ỹ(θiφi, t) is the random fluctuation at location θi, φi at time t. Equation (2.46) expresses

that the variance is dependent only on the latitude, which indicates the axial symmetry of the

components of the vector field.

2.6.3. TVRF Model for Ørsted Satellite Data. We use an extended version of our TVRF

model to describe the Ørsted satellite data set. We treat the data as the horizontal component of the

magnetic field and treat it as having been observed at a fixed altitude (which is an approximation).

This means that the observed field can be treated as a tangential vector field measured along the

satellite trajectories. Furthermore, we treat model the divergence-free and curl-free components

of the field to be independent (so that ρl ≡ 0 in our modeling paradigm). We assume that the

observed tangential field (i.e., the horizontal component of the magnetic field), is the sum of a non-

random and time-varying trend (µ) and anisotropic random stochastic fluctuations (ỹ). We define
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the observed geomagnetic vector field Y (si, t) at si ∈ S2 and time t, i = 1, · · ·nt, t = 1, · · · , T , as

Y (si, t) = µ(si, t) + ỹ(si, t)(2.47)

= µ(si, t) + ϕ(si, t)
(
y(si, t) + εi(t)

)
,(2.48)

where µ(si, t) is a non-random time varying trend and ỹ(si, t) is random stochastic fluctuation

at location si and time t. As noted from (2.46), the value of the scaling function, or standard

deviation profile, ϕ(si, t), is related to µ(si, t). Indeed, based on the empirical relationship (2.46),

model ϕ(s, t) as
√∫
|µ(θ(s), φ, t)|2, where θ(s) denotes the θ coordinate of the location s. This

shows that ϕ(s, t) is only a function of the latitude θ(s), and consequently, the random component

of the field Y (s, t) described in (2.48) is assumed to be axially symmetric. Note that, we use the

two components of the vector µ(s, t) separately to describe the scaling functions associated with

the two coordinates of the vector field. Thus, the anisotropic random field, ỹ, is a noise-corrupted

version of the y, multiplied (coordinatewise) by the axially symmetric scaling function. We model

latter field as an isotropic Gaussian TVRF.

We suggest two steps in the modeling: (1) non-random and time-varying mean field modeling

and (2) non-stationary random field component modeling.

Time-Varying Trend µ(s, t). We perform the linear regression to fit the mean trend after

representing the VSH basis coefficients of the mean field in a cubic B-spline basis to cope with the

time variation. Thus, we model the tangential vector mean field µ(si, t) as

µ(si, t) =

Lµ∑
l=1

l∑
m=−l

{
hBl,m(t)Bl,m(si) + hCl,m(t)Cl,m(si)

}
(2.49)

=

Lµ∑
l=1

l∑
m=−l

J∑
j=1

{
bBl,m,jBj(t)Bl,m(si) + bBl,m,jBj(t)Cl,m(si)

}
,(2.50)

where {Bj}Jj=1 is a collection of cubic B-spline basis functions, with equally spaced knots, cov-

ering the time domain under consideration, and Lµ is the maximum degree of VSH. The fixed

coefficients {hBl,m(t)}, {hCl,m(t)} are therefore expressed in the spline basis such that hBl,m(t) =∑J
j=1 b

B
l,m,jBj(t), hCl,m(t) =

∑J
j=1 b

C
l,m,jBj(t), where {bBl,m,j} and {bCl,m,j} are unknown model pa-

rameters (regression coefficients) to be estimated from the data.
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Tangential Vector Random Fields. We obtain observations on the anisotropic random fields

after subtracting the fitted values of the time-varying trend from the observations. We use the

estimated mean field to obtain estimates of the scaling factor ϕ. We model the axially symmetric

scaling functions for each direction separately as ϕθ(θi, t) =
√∫
|µθ(θi, φ, t)|2dφ and ϕφ(θi, t) =√∫

|µφ(θi, φ, t)|2dφ. In the application, in order to compute the estimates of ϕθ and ϕφ, we divide

the earth parallelly into 20 equally space latitudinal (θ) bins, and add the squares of the components

of µ̂(·, t) within the bin containing a given θi, and integrate over φ numerically to approximate the

value of ϕθ(θi, t) and ϕφ(θi, t) for each θi.

After subtracting the mean and rescaling the resulting field y(s, t) is modeled as an (noisy)

isotropic TVRF, and further, we assume the fluctuations to be independent in time, so that, for

different times t, the realizations y(s, t) are i.i.d. Thus,

y(si, t) =
Y(si, t)− µ(si, t)

ϕ(θi, t)
=

LR∑
l=1

l∑
m=−l

[fBl,m(t)Bl,m(si) + fCl,m(t)Cl,m(si)] + εi(t),(2.51)

where LR is the model order for the TVRF, and εi(t) denotes random noise that are assumed to

be i.i.d. both across time and location, and independent across coordinates, with zero mean and

variance τ2. fBl,m(t), fCl,m(t) are Gaussian random coefficients with zero mean and variance σ2B,l, σ
2
C,l,

which are modeled as σ2†,l = σ2† l
−α† , for 1 ≤ l ≤ LR, and † ∈ {B,C}. After obtaining the ”observed

values” of the isotropic TVRF through the equation (2.51), in which we substitude µ by its least

squares estimate, we find the MLE of the parameters θ = (σ2B, σ
2
C , τ

2), initially treating LR, αB

and αC as given.

Log-Likelihood Including Mean Trend. We consider the full log-likelihood including the mean

fields, to select the final model. Let Yt = Y(s, t) =
(
Yt(s1), Yt(s2), · · · , Yt(snt)

)
where i =

1, · · · , nt, t = 1, · · · , T . The TVRF model for Ørsted data is defined as

(2.52) Yt = µt +ϕt(yt + ε),

where ϕt = diag[ϕt(s1), · · · , ϕt(snt)].
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The log-likelihood is

(2.53) `(θ) = −
∑T

t=1 nt
2

log(2π)− 1

2

T∑
t=1

[
log(|V ϕ

t (θ)|) + trace
[
V ϕ
t (θ)−1(Yt − µ)(Yt − µ)T

]]
where V ϕ

t (θ) = ϕt[ZtGZ
T
t + τ2Int ]ϕt = ϕt[Vt(θ)]ϕt, where G = G(θ) is as in equation (2.25).

For estimating the random fields, we minimize a simpler version of the log-likelihood (2.54).

−2`(θ) = const. +

T∑
t=1

[
log(|V ϕ

t (θ)|) + trace
[
V ϕ
t (θ)−1(Yt − µt)(Yt − µt)T

]]

= const. +

T∑
t=1

[
log(|ϕt[Vt(θ)]ϕt|) + trace

[
(ϕt[Vt(θ)]ϕt))

−1(Yt − µt)(Yt − µt)T
]]

= const. +

T∑
t=1

[
log(|Vt(θ)|) + trace

[
Vt(θ)−1yty

T
t

]]
,(2.54)

where the constant does not depend on θ. The BLUP of Y are estimated to be

E
(
Yt(snew)|Yt(sold)

)
= µ̂t + ϕ̂t

[
Zt,newĜZTt,oldV

−1
t,old(θ̂)(Yt

(
sold)− µ̂t(sold)

)]
,

where, the right hand side should be interpreted as a plug-in estimate of the BLUP (i.e, the

EBLUP), Zt,old is the evaluation matrix of VSH at the observed locations, Zt,new is an evaluation

matrix at the new locations, and Vt,old(θ) is the submatrix of Vt(θ) corresponding to the vector of

observation locations sold.

2.6.4. Applying our model on the Ørsted Satellite Data. We illustrate the application of

the method described above to the Ørsted satellite data. In our parametric modeling, we estimate

fixed coefficients of the time-varying mean, variances of the random coefficients and variance of

random observational noise for different models. We consider AIC, BIC, AICc, and PMSE to select

the final model. We compare our final model with a few competing procedures for fitting the vector

field, and the results illustrate that our model has better prediction performance, indicating the

usefulness of including the random effects component of the TVRF in model fitting.

We consider 15 time periods of Ørsted satellite data from January 2, 2000, to April 16, 2000.

As discussed earlier, each time period corresponds to 101 orbital trajectories. We randomly sample

points from each trajectory evenly to cover the whole earth, while ensuring at least a total sample
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size of 1600 to satisfy the required sampling rate for the maximum order of spherical harmonics

to be 19. The trajectories are not always fully observed, and for each time period, parts of some

trajectories are missing. We draw random locations from each trajectory in proportion to the

number of the total available observations in the trajectory. This way, we obtain samples of 18

to 24 locations from the trajectories within each time period, so we have 1645 sampling locations

for the first time period. The total number of sampled locations for all periods is 24601. We

sample another new data set for cross-validation. The out-of-sample data are collected from the

same periods of time. Each period has a sample size of at least 400, and the total size of the

out-of-sample data set is 6702.

We model the TVRF with the mean fields (2.52). We estimate the mean fields with various

candidate models with different specifications of (Lµ, αB, αC), while keeping the TVRF model order

LR = 19 fixed for all the cases. We also allow the coefficients to be independent of time (the setting

denoted by “ind” in Table 2.3). For the time-dependent models (settings indicated by “dep” in

Table 2.3), we use cubic B-splines with intercept and one knot, so that, J = 5 in equation (2.50).

After we fit the mean fields, we estimate the variance of random coefficients with given smoothness

parameters (αB, αC). We assume the smoothness parameters are greater or equal to 1.

Lµ k αB αC σ̂2B σ̂2C τ̂2 RMSE RPMSE Time Field
1 9 498 1 1 3.033×10−5 5.657×10−5 8.761×10−4 280.74 311.24 dep blm
2 7 318 1 1 5.498×10−5 5.634×10−5 8.733×10−4 278.18 311.61 dep blm
3 9 102 4 2 4.948×10−2 4.656×10−4 8.857×10−4 285.11 313.01 ind blm
4 9 201 4 2 4.874×10−2 4.239×10−4 8.873×10−4 285.77 313.15 ind both
5 9 102 3 2 7.688×10−3 4.647×10−4 8.751×10−4 282.04 313.20 ind blm
6 9 201 3 2 7.633×10−3 4.248×10−4 8.766×10−4 282.65 313.38 ind both
7 7 129 3 2 9.294×10−3 4.641×10−4 8.772×10−4 281.24 313.86 ind both
8 9 993 3 2 1.947×10−9 3.573×10−5 9.322×10−4 304.77 314.36 dep both
9 9 993 1 1 1.316×10−5 2.086×10−5 8.874×10−4 305.69 315.72 dep both
10 7 633 1 1 4.074×10−5 2.803×10−5 8.831×10−4 311.47 318.60 dep both

Table 2.3. Results of candidates models are arranged by squares root predict mean
squared error (RPMSE). Lµ is the maximum degree of VSH. The field column
indicates what fields are used for the estimated mean fields. blm indicates using only
a curl-free field, and both mean using both the curl-free and divergence-free field.
The time column indicates whether assuming time dependency or independence.
The final chosen model is in the top row.
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We select the final model (2.55) in which the mean field is expressed in the curl-free fields and

is varied over time by cross-validation. We evaluate the MSE and PMSE of each model. The

final model has the smallest RPMSE among all candidates. It fulfills our assumption about the

non-random and time-varying mean fields; the main field is curl-free fields.

Y(si, t) =

Lµ=9∑
l=1

l∑
m=−l

{
hBl,m(t)Bl,m(si)

}
︸ ︷︷ ︸

µ(si,t)

(2.55)

+ϕ(θi, t)

( LR=19∑
l=1

l∑
m=−l

{fBl,m(t)Bl,m(si) + fCl,m(t)Cl,m(si)}+ εi

)
︸ ︷︷ ︸

y(si,t)+εi,t

For comparison, we have used random forest method(RF) [4], and generalized boosted regression

model (GBM) [42] to fit the same data set. We have fitted each direction separately against

latitude, longitude, and time (considering two univariate models) as the predictor variables. We

select the tuning parameters for these methods to produce the smallest prediction error (RMSE).

The parameters for RF are the minimum node size and sampling fraction. The parameters for

GBM are the maximum depth of each tree, the minimum number of observations in the terminal

nodes of the trees, and a fraction of the training set.

RF GBM VSH VRF
RMSE 1200.1718 351.1564 310.1380 280.7446

PRMSE 1189.4378 392.3918 314.7705 311.2401

Table 2.4. Comparison of squared-root mean squared error (RMSE:
sqrt(mean(residuals2))) and predicted squared-root squared error(RPMSE:
data set not used for estimating parameters.) tables of different models: RF, GBM,
VSH: Regression model with curl-free fields VSH Lµ = 9, VRF: TVRF modeling
which adds a random effect model on VSH

2.6.5. Confidence Set. Our proposed model enables more accurate and principled uncer-

tainty quantification of various quantities of interest by using the fitted field model. We use ap-

proximate sampling distributions of the estimated parameters to obtain confidence sets for the

mean field and prediction sets for the mean and TVRF, at any given location on the sphere based

on parametric bootstrap sampling. We construct confidence sets for parameters to demonstrate the
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bootstrap-based inference procedure. Let θ = (L,αB, αC , σ
2
B, σ

2
C , ρ, τ

2), and assume the anisotropic

TVRF model

Y (s, t) = µ(s, t) + ϕ(s, t)
(
y(s, t) + ε(s, t)

)
.

Given Y (s, t), we fit µ̂(s, t) and ϕ̂. We fit the stationary model ŷ(s, t) = Y (s,t)−µ̂
ϕ̂(s,t) . Then, we have

θ̂. We implement a parametric bootstrap procedure by generating new data as follows:

Y ∗(s, t) = µ̂(s, t) + ϕ̂(s, t)
(
y∗(s, t) + ε∗(s, t)

)
.

y∗(s, t) are independent in t. For each t, y∗(s, t) ∼ GTV RF (θ̂), ε∗(s, t)
iid∼ N(0, τ̂2). We obtain

Y ∗(s, t), and use the fitting procedure described earlier to get (µ̂∗(s, t), ϕ̂∗(s, t), θ̂∗) and use the

(bootstrap) sampling distribution of these estimates to construct confidence sets for the parameters.

There are two options for sampling for the unstructured noise, ε∗(s, t). The first approach is

sampling from N(0, τ̂2). The second is from y(s, t) obtain MLE θ̂ and get BLUP ŷ(s, t). The

residuals are generated from the difference such that ε̂(s, t) = y(s, t) − ŷ(s, t). Resampling from

ε̂(s, t) may be conducted at given a condition on time t to obtain ε∗(s, t).

We compute B bootstrap estimators from the resamples, and we construct confidence sets from

the bootstrapped estimators, θ̂∗ using asymptotic theory or the percentile bootstrap method.

Geomagnetic fields have unknown structures and present a challenge in finding the true model.

The potential for model misspecification has negative implications for constructing confidence sets,

primarily in terms of coverage of these confidence sets.

2.7. Discussion

We have introduced a TVRF model on the unit sphere. Our model is formulated based on

a linear mixed effect model using a VSH representation. The representation can be decomposed

into curl-free fields and divergence-free fields based on the Helmholtz-Hodge theorem, so our model

endows random effects for the two types of fields. It enables preserving the natural constraints,

which are useful for understanding random processes in geophysical and environmental sciences.

Our model has a relatively small number of parameters and a simple and interpretable covariance

structure.
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We examine the performance of our model based on simulated data in different settings. The

results show that our methods can consistently estimate parameters and predict appropriately.

By model selection criteria like AIC, BIC, and cross-validation, we are able to select the true

maximum order of VSH. We also extend our modeling framework to model a certain class of

anisotropic fields inspired by that the fluctuations of Ørested satellites are proportional to its mean

fields. Because the anisotropic functions are dependent on the mean fields and the presence of the

scaling function has a multiplicative effect on the observational noise, the estimation error in the

mean field significantly influences our estimates and predictions. The estimates are improved with

more observations. Furthermore, one step updating of the estimates using an RWLS procedure is

helpful. We may explore different types of anisotropic fields, which depend on the locations but

not on the mean fields.

We may study further on how to specify the smoothness parameters. The model selection

criteria may not be able to accurately determine the true smoothness parameter, but an incor-

rect specification of these smoothness parameters influence our estimates of variance components

significantly, and it has key roles in terms of understanding the fluctuations of the process.

In applications, we illustrate the modeling of geomagnetic fields from Ørsted satellite data. Our

application results suggest that adding the random components improves both fits and predictions,

as compared to some standard data fitting schemes that only use fixed effects. We can determine

the random effects of each curl-free field and divergence-free field for a geomagnetic field and

suggest ways to construct its confidence sets using parametric bootstrap sampling. The final model

represents the fields with its physical constraints and quantifies its uncertainties.

Our TVRFs model can be extended to incorporate radial components to manage data on a

spherical shell (S2 × (R1, R2)) for near-earth geophysical application.

(2.56) y(si) =

L∑
l=1

l∑
m=−l

[
fRl,m(r)Yl,m(si) + fBl,m(r)Bl,m(si) + fCl,m(r)Cl,m(si)

]
+ εi

The coefficients are random components and a function of radius, which was not accounted for

in the previous TVRFs due to the restriction of the filed to the surface of the unit sphere. We
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can further improve computational efficiency to manage large amounts of data by using a discrete

Fourier transform if the observation locations are on an equiangular grid.
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CHAPTER 3

Inference on Stationary Gaussian Processes on Undirected Graphs

3.1. Introduction

Data with complex high dimensional structures have been observed in many fields recently. In

this chapter, we are interested in modeling such data with high dimensional multivariate processes.

Very often for such data additional information are available in the form of connectivity of similarity

measures.

For example, we consider processes observed on the oceanic surface, where the domain of

interest is defined as a subset of a sphere. We assume that sample points are originated from a

given deterministic or random manifold. The core structures of the manifold are approximated by

a weighted graph constructed from these samples, where each individual point represents a vertex

of the graph, and some similarity measure between any pair of vertices represents the weight on

the corresponding edge. The phenomenon is illustrated by the characterization of the limits of the

graph Laplacian as the Laplace-Beltrami operator on the underlying manifold, under appropriate

sampling regimes (See [45] [3] for details).

This chapter proposes a new framework for analyzing data observed on the nodes of an undi-

rected graph using spectral graph theory. We construct Gaussian scalar processes and the asso-

ciated inferential framework when the domain of observations is an undirected weighted graph in

Section 3.2. We study the effects of graph structures and predict the missing values in Section 3.4.

We illustrate the model in Gross Domestic Product per capita in the neighborhood graph of counties

in Section 3.5.

3.2. Construction of Gaussian Processes on Undirected Graphs

3.2.1. Construction. The stochastic process on a graph is derived from the spectral graph

theory [7]. Suppose we have a weighted undirected graph G with N nodes, with symmetric weighted

adjacency matrix W = (Wij), where Wij ≥ 0 for all i, j. Our construction of a stochastic process
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is on the spectral decomposition of the graph Laplacian, defined as L = D −W, where D is the

diagonal matrix with entries as the degree of the nodes, Dii =
∑N

j=1Wij .

Consider the spectral decomposition of L

L = χΛχT ,

where Λ is a diagonal matrix of eigenvalues of L, in increasing order as 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1,

and χ = [χ0, · · · , χN−1] is the corresponding matrix of orthogonal eigenvectors, with χ0 = N−1/21.

We define a Gaussian process X on the graph G as

(3.1) X = µ+

N−1∑
j=0

√
g(λj ,θ)Zjχj ,

where g(·,θ) ≥ 0 are spectral density functions parameterized by parameters θ, {Zj}N−1j=0 are iid

with N(0, 1). The process X = (X(v))v∈G has a mean µ = (µ(v))v∈G and covariance Σ(θ) given

by

(3.2) Σu,v(θ) =

N−1∑
j=0

g(λj ,θ)χj(u)χi(v), u, v ∈ G

where χj(u) is the u-th coordinate of the vector xj . The covariance can be defined as

(3.3) Σ(θ) = χg(Λ,θ)χT

where g(Λ,θ) = diag(λj ,θ)N−1j=0 .

We express the observed data Yt as the process X corrupted by additive random noise:

(3.4) Yt(v) = Xt(v) + εt(v), v ∈ G, t = 1, · · · , T,

where εt(v) are independent and identically normal distributed with a mean of 0 and variance σ2,

and t is observed time.

3.2.2. Spectral Density Function. The statistical model for a Gaussian stationary process

on an undirected graph G is determined by the specification of spectral density function, g(λ,θ).
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The covariance matrix (3.3) is defined using the eigenvectors of the graph Laplacian L and the

functions g(λ,θ), for a given weighted graph (G,W).

The spectral density function g(λ,θ) characterizes the stationary process on the graph. For

example, if g is a positive constant function, its covariance matrix becomes an identity matrix or

a positive constant multiplied by the identity matrix. In this case, the process has no particular

structure but random white noise. If g is a step function like 1 for the case when eigenvalue is 0 or

0 for otherwise, then the covariance matrix will become not a full rank matrix or rank one matrix.

We consider three different spectral density functions.

Model 1 For j = 0, . . . , N − 1, set θ = (θ1, θ2, θ3, θ4) and

(3.5) g(λj ,θ) = θ1(j + 1)−θ2 + θ4λ
−θ3
j 1{λj>0}.

Here, θ1, θ4 > 0, θ2 > 0 and θ3 ∈ [0, 1].

Model 2 For j = 0, . . . , N − 1, set θ = (θ1, θ2, θ3) and

(3.6) g(λj ,θ) =
θ2

(θ1 + κλj)θ3
.

Here, θ1, θ2, θ3 > 0, and κ > 0 is considered as known. This model may be referred to as

the graphical Matérn model by comparing with the spectral density of a Matérn covariance

model.

Model 3 For j = 0, . . . , N − 1, set θ = (θ1, θ2, θ3) and

(3.7) g(λj ,θ) = θ1e
−θ2λ

θ3
j .

Here, θ1, θ2, θ3 > 0.

Generally, as eigenvalue λ increases, the value of g decreases. As the largest value of g increases,

the magnitude of covariance increases, which indicates more fluctuations in the process. The

correlation structures are also related to the spectral function g. A process with a smaller range of

g values and a larger smoothness parameter shows higher correlations among observations in the

connected nodes.
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3.2.3. Stationarity. We consider two tests for checking stationarity of observations with re-

spect to the structure of the associated undirected graphs. Schott [44] proposes test statistics as a

sum of squared correlations to test the complete independence of random variables having a multi-

variate normal distribution. The null hypothesis of the test is that there is no correlation between

variables, which is written as H0 : ρi,j = 0 (i > j). The test statistics tn,m is defined in terms of

the sample correlation ri,j for i > j,

(3.8) tn,m =

p∑
i=2

i−1∑
j=1

r2i,j −
p(p− 1)

2(n− 1)
,

where p is the number of variables, n is the sample size. Under the null and assuming that

limh7→∞(p/n) = γ ∈ (0,∞) holds, the test statistic, tn,p, converges in distribution to the normal

distribution with mean 0 and variance γ2. The γ2 is the limit of variance of the test statistic

lim Var(tn,p) = lim p(p−1)(n−2)
(n−1)2(n+1)

.

Cai and Jiang [5] consider limiting laws of the coherence of a random matrix and suggest testing

the covariance structure. Suppose one observes independent and identically distributed p-variate

Gaussian variables Y1, · · · , Yn with mean µp×1, covariance matrix Σp×p and correlation matrix

Rp×p = (rij). The null hypothesis to test the covariance structure is:

(3.9) H0 : σi,j = 0 for all |i− j| ≥ δ

and for a given integer δ ≥ 1. Here δ = 1 corresponds to the test of complete independence of the

random variables. They define the empirical coherence of the random matrix as follows:

(3.10) Ln,δ = max
|i−j|≥δ

|ri,j |,

They show that under the null and some regularity conditions, (nL2
n,δ − 4 log p + log log p) con-

verges weakly to an extreme value distribution of type I with distribution function F (y)− exp
(
−

(1/
√

8π)e−y/2
)
, y ∈ R. Consequently, we reject the null hypothesis at a significant level α if

(3.11) L2
n,δ ≥ n−1(4 log p− log log p− log(8π)− 2 log log(1− α)−1),
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We use the above two methods to check the stationary in our observations over the undirected

graphs, Yt(ν). We are interested in checking the stationarity of the covariance structure among

the observations on each node under the time independence assumption. We define a matrix

Y(ν) = [Y1, · · · , Yt]N×T and S as the sample covariance matrix. Due to the structure of the covari-

ance matrix under the assumption of graph-stationarity, the problem reduces to testing complete

independence of the transformed data χTY , where χ is the matrix of eigenvectors of the graph

Laplacian L. In other words, this means testing the null hypothesis that the transformed popula-

tion covariance matrix χTVar(Y )χ is diagonal. We conduct the two tests, by treating χTSχ as

the sample covariance matrix of the observations, compute the test statistics whereby the number

of variables (p) is N and the number of sample size (n) is T . We use δ = 1 this purpose, though

larger values of δ can be chosen depending on the graph structures. The applications of the tests

are illustrated in Section 3.5.

3.3. Maximum Likelihood Estimation

3.3.1. Spatial data. We first consider the maximum likelihood estimation of the model under

the spatial setting, i.e., when T = 1. We consider the parameter µ to be equal to zero to simplify

the analysis. Furthermore, we suppose that we have observations at every single node of the graph

G. Then the log-likelihood of the observed data (ignoring additive constants) is given by

(3.12) log `(θ, σ2) = −1

2
log
∣∣Σ(θ) + σ2IN

∣∣− 1

2
Y T
(
Σ(θ) + σ2IN

)−1
Y,

where Y = (Y (v))v∈G . More generally, if we only observe data at the nodes of a subgraph S, then

the corresponding log-likelihood is given by

(3.13) log `S(θ, σ2) = −1

2
log
∣∣ΣS(θ) + σ2I|S|

∣∣− 1

2
Y T
S
(
ΣS(θ) + σ2I|S|

)−1
YS ,

where YS = (Y (v))v∈S and

(3.14) ΣS(θ) = MSΣ(θ)MT
S ,

where MS is a |S| ×N matrix whose rows are the vectors eTv , for v ∈ S. Here ev is a vector in RN

with the v-th coordinate equal to 1 and the rest equal to zero.
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3.3.2. MLE under independent replicates. We consider the scenario where we observe

independent realizations of the process. Moreover, we also allow that for different realizations

(times), the observations may be obtained on different subgraphs. Specifically, suppose that at

time t, for t = 1, . . . , T , we observe the data Yt,St = (Yt(v) : v ∈ St), where St ⊂ G is a subgraph

with number of nodes equal to Nt := |St|. Further, suppose N̄T = min1≤t≤T Nt. We assume that

N̄T →∞ as T →∞.

Then, the log-likelihood of the observed data is given by,

(3.15) log `T (θ, σ2) = −1

2

T∑
t=1

log
∣∣ΣSt(θ) + σ2INt

∣∣− 1

2

T∑
t=1

YT
t,St
(
ΣSt(θ) + σ2INt

)−1
Yt,St ,

where ΣS is as in (3.14).

3.3.3. Information matrix. In this section, we compute the information matrix for the pro-

cess, under the single realization (T = 1) for different models in G. Based on the notations

introduced earlier, the complete data log-likelihood (3.12) can be expressed as

(3.16) log `(θ, σ2) = −1

2

N−1∑
j=0

log(σ2 + g(λj ,θ))− 1

2

N−1∑
j=0

Ỹ 2
j

σ2 + g(λj ,θ)
,

where Ỹj is the (j + 1)-th coordinate of Ỹ = χTY . Notice that, under (θ, σ2), we have Ỹ ∼

N(0, σ2IN + g(Λ,θ)).

Score function. Let θ be in an open subset of Rd. Then, for 1 ≤ k ≤ d,

∂

∂θk
`(θ, σ2|Y )

= −1

2

N−1∑
j=0

1

σ2 + g(λj ,θ)

∂g(λj ,θ)

∂θk
+

1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk
Ỹ 2
j

= −1

2
Trace

(
∂g(Λ,θ)

∂θk
(σ2IN + g(Λ,θ))−1

)
+

1

2
Ỹ T ∂g(Λ,θ)

∂θk
(σ2IN + g(Λ,θ))−2Ỹ ,(3.17)

and

∂

∂σ2
`(θ, σ2|Y ) = −1

2

N−1∑
j=0

1

σ2 + g(λj ,θ)
+

1

2

N−1∑
j=0

Ỹ 2
j

(σ2 + g(λj ,θ))2

= −1

2
Trace

(
(σ2IN + g(Λ,θ))−1

)
+

1

2
Ỹ T (σ2IN + g(Λ,θ))−2Ỹ .(3.18)
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Hessian of the log-likelihood. Taking second partial derivatives

∂2

∂θk∂θl
`(θ, σ2|Y )

= −1

2

N−1∑
j=0

1

σ2 + g(λj ,θ)

∂2g(λj ,θ)

∂θk∂θl
+

1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk

∂g(λj ,θ)

∂θl

+
1

2

N−1∑
j=0

Ỹ 2
j

(σ2 + g(λj ,θ))2
∂2g(λj ,θ)

∂θk∂θl
−
N−1∑
j=0

Ỹ 2
j

(σ2 + g(λj ,θ))3
∂g(λj ,θ)

∂θk

∂g(λj ,θ)

∂θl
(3.19)

∂2

∂θk∂σ2
`(θ, σ2|Y ) =

1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk
−
N−1∑
j=0

Ỹ 2
j

(σ2 + g(λj ,θ))3
∂g(λj ,θ)

∂θk
(3.20)

and

∂2

∂(σ2)2
`(θ, σ2|Y ) =

1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
−
N−1∑
j=0

Ỹ 2
j

(σ2 + g(λj ,θ))3
.(3.21)

We denote the Fisher information matrix by I(θ, σ2) and denote its (k, l)-th element by

Ikl(θ, σ2), for 1 ≤ k, l ≤ d + 1, with first d indexes corresponding to coordinates of θ. Then,

for 1 ≤ k, l ≤ d,

Ikl(θ, σ2) = −Eθ,σ2

[
∂2

∂θk∂θl
`(θ, σ2|Y )

]

=
1

2

N−1∑
j=0

1

σ2 + g(λj ,θ)

∂2g(λj ,θ)

∂θk∂θl
− 1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk

∂g(λj ,θ)

∂θl

−1

2

N−1∑
j=0

(σ2 + g(λj ,θ))

(σ2 + g(λj ,θ))2
∂2g(λj ,θ)

∂θk∂θl
+
N−1∑
j=0

(σ2 + g(λj ,θ))

(σ2 + g(λj ,θ))3
∂g(λj ,θ)

∂θk

∂g(λj ,θ)

∂θl

=
1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk

∂g(λj ,θ)

∂θl

=
1

2
Trace

[
∂

∂θk
g(Λ,θ)

(
σ2IN + g(Λ,θ)

)−2 ∂

∂θl
g(Λ,θ)

]
.(3.22)
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For 1 ≤ k ≤ d,

Ik,d+1(θ, σ
2) = −Eθ,σ2

[
∂2

∂θk∂σ2
`(θ, σ2|Y )

]

= −1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk
+
N−1∑
j=0

N−1∑
j=0

σ2 + g(λj ,θ)

(σ2 + g(λj ,θ))3
∂g(λj ,θ)

∂θk

=
1

2

N−1∑
j=0

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
∂g(λj ,θ)

∂θk

=
1

2
Trace

[
∂

∂θk
g(Λ,θ)

(
σ2IN + g(Λ,θ)

)−2]
.(3.23)

Finally,

Id+1,d+1(θ, σ
2) = −Eθ,σ2

[
∂2

∂(σ2)2
`(θ, σ2|Y )

]

= −1

2

N−1∑
j=0

1

(σ2 + g(λj ,θ))2
+
N−1∑
j=0

(σ2 + g(λj ,θ))

(σ2 + g(λj ,θ))3

=
1

2

N−1∑
j=0

N−1∑
j=0

1

(σ2 + g(λj ,θ))2

=
1

2
Trace

[(
σ2IN + g(Λ,θ)

)−2]
.(3.24)

Notice that, the information matrix depends only on the values of g(λj ,θ) and ∂
∂θk

g(λj ,θ), for

k = 1, . . . , d, as functions of θ.

3.3.4. Gradient computation for specific models. In this subsection, we summarize the

gradients of g(λj ,θ) for each of the three models specified in Section 3.2.2.

3.3.4.1. Model 1.

∂

∂θ1
g(λj ,θ) = (j + 1)−θ2 ,(3.25)

∂

∂θ2
g(λj ,θ) = −θ1 log(j + 1)(j + 1)−θ2 ,(3.26)

∂

∂θ3
g(λj ,θ) = −θ4 log λjλ

−θ3
j 1(λj>0) and(3.27)

∂

∂θ4
g(λj ,θ) = λ−θ3j 1(λj>0).(3.28)
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3.3.4.2. Model 2.

∂

∂θ1
g(λj ,θ) = − θ1θ3

(θ1 + κλj)θ3+1
,(3.29)

∂

∂θ2
g(λj ,θ) =

1

(θ1 + κλj)θ3
and(3.30)

∂

∂θ3
g(λj ,θ) = −θ2 log(θ1 + κλj)

(θ1 + κλj)θ3
.(3.31)

3.3.4.3. Model 3.

∂

∂θ1
g(λj ,θ) = exp

(
−θ2λθ3j

)
,(3.32)

∂

∂θ2
g(λj ,θ) = −θ1λθ3j exp

(
−θ2λθ3j

)
and(3.33)

∂

∂θ3
g(λj ,θ) = −θ1θ2λθ3j log λj exp

(
−θ2λθ3j

)
.(3.34)

3.3.5. Heuristic asymptotic analysis. Given data (Y (v))v∈S , the maximum likelihood es-

timation involves maximizing log `S(θ, σ2) with respect to (θ, σ2). Below, we conduct a heuristic

asymptotic analysis to understand the behavior of the MLE.

Let ΓS(θ, σ2) = ΣS(θ) + σ2I|S|. Let (θ0, σ
2
0) denote the true parameters for the generative

model. Then, by using Gaussianity, we can express

YS =
(
ΓS(θ0, σ

2
0)
)1/2

ZS ,

where ZS ∼ N(0, I|S|). Thus, when NS := |S| is large, and subject to some regularity conditions,

by using Gaussian concentration, we can write

(3.35)
1

NS
log `S(θ, σ2) = − 1

2NS
Trace

[(
ΓS(θ, σ2)

)−1
ΓS(θ0, σ

2
0)
]
− 1

2NS
log
∣∣ΓS(θ, σ2)

∣∣+OP (
√

logN/NS),

where the probabilistic bound (OP -term) holds uniformly over a compact subset of the parameter

values (θ, σ2). Consequently, the difference 1
NS

log `S(θ0, σ
2
0) − 1

NS
log `S(θ, σ2) can be expressed

as
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1

NS
log `S(θ0, σ

2
0)− 1

NS
log `S(θ, σ2)

= − 1

2NS
Trace

[
I|S| −

(
ΓS(θ, σ2)

)−1
ΓS(θ0, σ

2
0)
]
− 1

2NS
log
∣∣∣(ΓS(θ, σ2)

)−1
ΓS(θ0, σ

2
0)
∣∣∣+OP (

√
logN/NS)

= − 1

2NS
Trace

[
I|S| −

(
ΓS(θ, σ2)

)−1/2
ΓS(θ0, σ

2
0)
(
ΓS(θ, σ2)

)−1/2]
− 1

2NS
log
∣∣∣IS − [IS − (ΓS(θ, σ2)

)−1/2
ΓS(θ0, σ

2
0)
(
ΓS(θ, σ2)

)−1/2]∣∣∣+OP (
√

logN/NS)

= − 1

2NS
Trace

[
I|S| −∆S(θ, σ2)

]
− 1

2NS
log
∣∣IS − [I|S| −∆S(θ, σ2)

]∣∣+OP (
√

logN/NS),

(3.36)

where

∆S(θ, σ2) =
(
ΓS(θ, σ2)

)−1/2
ΓS(θ0, σ

2
0)
(
ΓS(θ, σ2)

)−1/2
.

Now suppose that (θ, σ2) is in a small neighborhood of (θ0, σ
2
0), so that

(3.37) ‖I|S| −∆S(θ, σ2)‖ = o(1)

as N,NS →∞, where ‖ · ‖ denotes the operator norm.

Then, by expanding the log-determinant term in (3.36) in Taylor series, we have the following

approximation

1

NS
log `S(θ0, σ

2
0)− 1

NS
log `S(θ, σ2)

=
1

2NS
Trace

[(
I|S| −∆S(θ, σ2)

)2]
+RN (θ, σ2) +OP (

√
logN/NS),(3.38)

where the residual term RN (θ, σ2) satisfies

RN (θ, σ2) = O

(
‖I|S| −∆S(θ, σ2)‖ 1

2NS
Trace

[(
I|S| −∆S(θ, σ2)

)2])
.

Now, we analyze the behavior of the dominant term in (3.38) when S = G, (so that NS = N),

that is when we observe data at all the nodes of the graph. In this case, the expressions can be

derived analytically that enable us to understand the asymptotic behavior of the MLE of (θ, σ2).
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To understand this, notice that, when S = G, the matrix ∆S(θ, σ2) ≡ ∆(θ, σ2) simplifies to

∆S(θ, σ2) = ∆(θ, σ2) = χ
(
g(Λ,θ0) + σ20IN

) (
g(Λ,θ) + σ2IN

)−1
χT .

Hence, when S = G,

1

NS
Trace

[(
I|S| −∆S(θ, σ2)

)2]
=

1

N
Trace

[(
IN −∆(θ, σ2)

)2]
=

1

N

N−1∑
j=0

(
1− g(λj ,θ0) + σ20

g(λj ,θ) + σ2

)2

=
1

N

N−1∑
j=0

1

(g(λj ,θ) + σ2)2
(
g(λj ,θ)− g(λj ,θ0) + σ2 − σ20

)2
.(3.39)

Again using Gaussian concentration bounds, we can deduce that, for (θ, σ2) in a compact

neighborhood of (θ0, σ
2
0),

1

TN̄T
log `T (θ, σ2) = − 1

2TN̄T

T∑
t=1

Trace
[(

ΓSt(θ, σ
2)
)−1

ΓSt(θ0, σ
2
0)
]

− 1

2TN̄T

T∑
t=1

log
∣∣ΓSt(θ, σ2)∣∣+OP

(√
log(TN)

TN̄T

)
.(3.40)

3.4. Simulation Studies

We study the characteristics of our graphical Matérn model on an undirected graph, from

various scenarios in the simulation studies. We explore how graph structures affect our modeling

results. We investigate relationships between parameters of the graphical Matérn model. We

demonstrate modeling in cases where we have partial observations on the graph and evaluate the

model. We point out that the optim() function in R is unstable for estimating our model, and

hence we use grid search, in spite of its high computational cost, for computing the MLE. We have

carried out some numerical comparisons between these approaches.

3.4.1. Graph Structure. We explore how the constructions of graphs affect the estimation

of a graphical Matérn modeling. We construct graphs with different node configurations, numbers

of nodes, and their connectivity.
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Figure 3.1. Node sampling by uniform distribution and Gaussian DPP. The nodes
generated by DPP are more evenly spread compared to the nodes by Uniform.

Node Configurations. We use two methods to choose locations of nodes in a unit square: uni-

form Poisson point process (uniform) or Gaussian determinantal point process (DPP) [33]. In the

uniform setting, the coordinate of a node location (x, y) is independently sampled from the unit

uniform distribution. We consider a DPP on a unit square, and it is specified by a Gaussian kernel

C0(xi) = ρ exp(−‖xi/α‖2), xi ∈ (0, 1) × (0, 1), where ρ is an intensity parameter and α is a scale

parameter, α = 1/
√
πρ. DPP enforces a degree of repulsion among the nodes (points). Nodes from

DPP are more evenly distributed and have fewer open spaces in the domain than nodes with a

uniform distribution; see Figure 3.1. We consider 100, 500, and 1000 of node sizes in the uniform

configuration. We use α = 0.05, 0.025, 0.017 to generate DPP configurations which correspond to

ρ equal to 100, 500, and 1000.

Node Connectivity. We create geometric graphs of the node configurations and assign different

connectivity among nodes. The weight matrix, W = ((Wij)), of geometric graphs is defined as

follows.
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Figure 3.2. Degree distributions of the geometric graph with given β and node
configurations: Histogram of degree when the number of nodes is 1000. Rows cor-
responding to distribution of nodes and columns for corresponding β.

For some τ > 0,

(3.41) Wij = c exp

(
− ‖xi − xj‖

2

τ2N

)
where c > 0, and (xi, xj) are node coordinates uniformly drawn from a unit square: (0, 1)× (0, 1)

or from DPP. We define τ2N = τ2Nβ, where 0 ≤ β ≤ 1. τ2N , which prevents the infill situation in

which all nodes are connected as the number of nodes increases, N → ∞. In the experiments, we

explore β from 0.2 to 0.6 which gives different edges in the identical node configuration and set

c = 1, τ2 = 0.1 for all graphs. We discretize (Wij) into 0 or 1.

Here β determines the degree of connectivity among the nodes in geometric graphs and influ-

ences the degrees of the graphs. The ranges of degrees decrease as β increases, indicating more

sparse graphs; see Figure 3.2. The degree distribution at β = 0.4, 0.5 with DPP nodes are nearly

symmetrical, and the degree distribution of uniform nodes are nearly symmetrical at β = 0.3, 0.4.

The distribution with a small β = 0.2 is left-skewed and, at a larger β = 0.6, is right-skewed.

Degrees of the graphs from DPP are spread in smaller ranges than those from the uniform distri-

bution.
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Note that β is closely related to the behavior of eigenvalues of the graph Laplacian because

β determines the number of degrees on nodes. We observe the eigenvalues behaving upon the

different β and node locations; see Figure 3.3. The largest (first) eigenvalue represents the number

of edges on the most connected nodes. The first eigenvalue is bigger in smaller β, and at the same

β, the first eigenvalue of uniform node configurations is bigger than that of DPP. The flat slope

of the eigenvalue curve indicates that some nodes have a similar number of edges. The slope gets

flattered as β increases, and the decreasing rate of eigenvalues is smoother in DPP than in uniform.

The number of zero eigenvalues indicates the number of connected graphs, and graphs with larger

β include more connected graphs. These are from the fact that nodes in graphs with smaller β

tend to have more connections to other nodes and more edges. Moreover, the node configuration

of DPP produces more sparse graphs than that of uniform.

We use the spatial information from eigenvalues and eigenvectors of the graph Laplacian and

define the covariance structures based on them. In the case of the uniform node configuration at

the smallest β, nodes tend to cluster instead spread evenly, and its information is concentrated on

particular nodes. Its first eigenvalue is the largest in Figure 3.3, and the corresponding eigenvector

is the most fluctuated. We consider such as a difficult environment for modeling, and we expect

certain node connectivity to offer a better environment for our model. Next, we explore the quality

of our parameter estimates.

Simulation Setting. We generate 500 replicates of the stationary processes with graphical Matérn

covariance function (3.6) with θ = (θ1 = 1, θ2 = 1, θ3 = 0.25) and κ = 0.5 on the geometric graphs.

The node configurations are generated from Uniform and DPP and the connectivity of nodes is

defined from different β such as 0.2, 0.3, 0.4, 0.5, and 0.6. We perform optimization using the Nelder-

Mead method to find MLEs, θ̂, for the models with known κ. We optimize two parameters with

the other parameter being given, and one initial point is used for the optimization with all 500

simulated data set. The results are reported in Figures 3.5 and 3.6.

We find that the estimates become more accurate for a larger node size with a suitable β.

The scatter plots, Figure 3.5, illustrate bivariate distributions of θ̂2 and θ̂3 when θ1 is known at

each β and node configurations. When β = 0.5, the estimates are mostly concentrated at the true

parameters. The degree distribution of β = 0.5 is symmetric in Figure 3.2, and its eigenvalues are
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Figure 3.3. Eigenvalue plots of the graph Laplacian from uniform (N=1000) and
DPP (N=1012)

Figure 3.4. Determinant of Information Matrix (Subsection 3.3.3) against β per
node configuration and size. The determinants are maximized at β = 0.5 for N =
500, 1000 and β = 0.3 for N = 100.

smoothly decreased in Figure 3.3. The determinant of information matrix is maximized at β = 0.5

when the node size is 500 or 1000, Figure 3.4. It suggests that graphs, having symmetric degree

distribution and smoothly decreasing, offer a better environment to identify more precise estimates.

The range parameter, θ1, is more challenging to be well estimated in any settings; see Figure 3.6.

Most estimates of θ1 are on the boundary of a given possible range, and they are rarely at the true

value. Note that θ1 influences on the estimates of θ2, θ3, and when we fix θ1, the estimates are

68



www.manaraa.com

Figure 3.5. MLEs of θ2 and θ3 with given true θ1. The reference line denotes the
true parameters. N is the number of nodes, and b indicates β. As β increases, the
range of MLEs decreases.

Figure 3.6. Marginal density plot of MLE for θ1 given θ3. The reference line
indicates the true parameter value.

reasonable in Figure 3.7. In our modeling here, we avoid estimating θ1 directly. We offer discrete

fixed values set for θ1 and estimate the other two parameters for our modeling.
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Figure 3.7. Density of MLE of θ2, θ3: Each row is for θ2, θ3. The columns are
corresponded to β. The dotted gray line indicates the true parameter.

We find that β in geometric graphs is critical to obtain quality estimates. First, β influences

on the behavior of eigenvalues. If β = 0, the same as τ2N = τ2, the eigenvalues are smoothly

distributed, so it is hard to estimate model parameters. If β = 1, which indicates a few connected

nodes, this case does not properly convey its spatial structure into the model. Second, β affects on

the degree distributions in Figure 3.2. As β increases, the range of degree distributions decreases.

We observed skewness on the degree distribution of larger or smaller β. Figure 3.7 illustrates the

distributions of estimated θ2, θ3, and the MLEs are closed to the true parameter at 0.4 ≤ β ≤ 0.6.

When β = 0.5, it produces the most accurate estimation quality and exhibits symmetrical degree

distribution overall. The determinant of the information matrix is maximized at β = 0.5; see

Figure 3.4.

3.4.2. Partial observations on a graph. We illustrate situations where we have partial

observations on an undirected graph. We investigate how our models perform differently upon

the structure of observation, the graph size, and the node connectivity. We explore the following

settings, such as different rate (γ) of observed values, missing locations, graph size (N), and the

node connectivity (β).

• Rate of observation: γ = 0.2, 0.5, 0.8

• Location of observation: Random or Block
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Figure 3.8. The node locations are generated from DPP.

• Node connectivity: β = 0.25, 0.5, 0.75

• Graph Size N = 500, 1012

We generate 100 Gaussian processes with the graphical Matérn covariance function (3.6). We

demonstrate two parameter sets such as (θ1 = 1, θ2 = 1, θ3 = 0.25, σ2 = 0.01) and (θ1 = 1, θ2 =

1, θ3 = 0.5, σ2 = 0.01) with κ = 0.5. We estimate the parameters of our model with the given θ1

and κ using observed values (3.13) and predict the unobserved values. We explore how the qualities

of estimation and prediction vary over the graph structures and observations.

We confirm that the sparsity of the graph connection (β) affects the estimation and predictions.

For a denser graph with many edges and smaller β, the estimates are centered at the true parameters

and have larger standard errors; see Figure 3.9. For a sparse graph, the estimates tend to be biased

with smaller standard errors. In-sample errors, (MSE: 1
|S|(YS − ỸS)2 ) and out-of-sample errors

(PMSE) increase as β increases; see Figure 3.10. The prediction errors increase in more sparse

graphs. To model the processes in graphs properly, we need to have certain connectivity levels

among the nodes.

The rate of observations (γ) does not influence the estimates of the models and predictions

generally. A larger area (rate) or larger graph size in terms of node sizes produces smaller estimates’
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Figure 3.9. Scatter plots between θ̂2 and θ̂3. Red is the estimate from random
observed locations, and green is from block locations. The reference lines indicate
the true parameters.

Figure 3.10. Boxplots of RMSE and RPMSE against the rates of observations:
Each panel represents the β of the graphs. The prediction error is dependent on the
sparsity of graph (β) rather than the rate (γ).

standard errors. In-sample errors are different over the rate in Figure 3.10, and out-of-sample errors

are constant levels over the rate. The errors are affected by the sparsity of the graph rather than

the rate of observations. At the low rate of observations and β = 0.5, the estimates of random

observed locations give higher errors than the block locations. At the low rate of observations and

β = 0.75, the estimates of random locations present smaller errors. The quality of estimates and

predictions are from the graph structures which convey sufficient information of processes.
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Figure 3.11. Boxplots of RPMSE against β and its theoretical conditional stan-
dard deviations. The theoretical conditional standard deviation is black dot for
random and is black triangle for block.

We compare RMSE and RPMSE of our experiments to the theoretical conditional variance (3.42).

In Figure 3.11, the errors increases as β increases no matter how accurate the estimates are:

(3.42) ΓBB|AA =
1

|B|
tr

(
ΓBB − ΓBAΓ−1AAΓAB

)
,

where A refers the observed nodes and values, and B for the unobserved. Block locations are better

for the prediction of in-sample in Figure 3.11. There is no significant difference between block and

random locations in out-of-sample, and RPMSE is more related to the sparsity of the graph.

Estimating the variance (σ2) of random fluctuations is challenging in any given situations; see

Figure 3.12. Its estimates have larger standard errors at denser graphs. The estimates tend to

be biased at a sparse graph, and they likely converged at the initial point of the optimization.

When we have bigger smoothness parameter θ3 = 0.5, the standard errors of the estimates tend to

be smaller than at θ3 = 0.25. However, if we have a larger smoothness parameter θ3 for a better

estimate of σ2, θ3 becomes trickier to be estimated. We will further explore the relationships among

parameters of the graphical Matérn model and the variance of random fluctuation in Section 3.4.3.

In the experiments, we observe that the estimation and prediction are difficult in the situation

with large missing values (small γ) in a denser graph (small β). The connectivity of the graph

affects the estimation and prediction of the models significantly.

3.4.3. Explore Variables in graphical Matérn Model. We perform experimental stud-

ies to explore connections between parameters of the graphical Matérn model and the variance of
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Figure 3.12. Boxplots of σ̂2. The solid reference line is the true parameter (0.01),
and the dashed line is an initial point for the optimization. Red is from random
observed locations, green is from block locations

unstructured noise. We observe that the unstructured variance, σ2, is difficult to be estimated

adequately. We consider possible intrinsic issues for having accurate estimates of θ3 and σ2 simul-

taneously. For example, the true σ2 is relatively small compared to the range of eigenvalues of the

graph Laplacian or other parameters. It would be more challenging to estimate the σ2 in a less

smooth process, having a smaller θ3.

We generate 100 Gaussian processes on an identical graph with four parameter sets,

• Θ1 = (θ1 = 1, θ2 = 1, θ3 = 0.25)

• Θ2 = (θ1 = 0.1, θ2 = 1, θ3 = 0.25)

• Θ3 = (θ1 = 1, θ2 = 1, θ3 = 0.75)

• Θ4 = (θ1 = 0.1, θ2 = 1, θ3 = 0.75)

and the two different variances of random noises, σ2, are 0.01 and 0.1. We have eight different

Gaussian processes on the identical graph (DPP, N = 1012, β = 0.5). We conduct grid searches

for finding MLEs with the given θ1 and κ. We investigate that the estimate of σ2 gets closed to the

true parameters at the larger θ3, the large magnitude of unstructured fluctuations would be easier

to be detected, and how the value of range parameters θ1 might affect on the estimates of θ3 and

σ2.
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Figure 3.13. The solid line indicates the true parameters. The MLE of θ3 are
accumulated near the truth, but σ2 is spread across the range of grid.

The magnitude of the range parameter, θ1, affects the estimates of θ3, see Figure 3.13. We

confirm that the smaller θ3 is easier to be estimated than larger θ3 overall. Regardless of our

settings, σ2 is still difficult to estimate for both cases, σ2 = 0.1 and 0.01.

We further examine the eigenvalues of Σ(θ), the covariance of the Gaussian process to under-

stand the above behavior of estimates. The range of eigenvalues is from 0.5 to 1, and its approximate

square root is 0.7. The true σ2 is much smaller than the square root of eigenvalues, so the generated

unstructured noise with σ2 is less effective for the primary process due to the small magnitude. As

we look at the eigenvalues of Σ(θ), we can see that θ1 influences the shape of lines. The smaller θ1

gives a smoother process and more informative eigenvalues.

Given (θ2, θ3) and with θ1 treated as known, the σ2 parameters are easier to estimate with the

situation when θ1 is smaller. Let θ′1 < θ′′1 , θ′1 is easier to estimate (θ2, θ3) because there is greater

slope with eigenvalue profile of Σ(θ).

MOM Approach for the unstructured variance. We consider the method of moment (MOM)

estimator for σ2 and illustrate the variance’s behaviors upon the parameter sets.

The theoretical MOM estimator for σ2 is as follows:

(3.43) σ̂2MOM =
1

N

{
tr(Γ̂)− tr(Γ(θ, σ2))

}
,
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Figure 3.14. MLE GS is an MLE for σ2 from the previous grid search. The grid
is constrained to greater than 0. MLE GS concentrates on the boundaries of the
grid.

where Γ̂ is a sample covariance from the full observations. MOM (3.43) is calculable when all true

parameters are known. We define two other MOM scheme estimators for the unknown parameters.

σ̂2MOM,1 =
1

N

{
tr(Γ̂)− tr(Γ(θ̂, σ2))

}
,(3.44)

σ̂2MOM,2 =
1

N

{
tr(Γ̂)− tr(Σ(θ̂))

}
.(3.45)

MOM1 is calculated with the known σ2 and the estimated θ. MOM2 is evaluated with only the

estimated θ and assuming all parameters are unknown. The estimated θ are MLEs from the grid

search results.

At a smaller σ2 = 0.01, MOMs are centered around the true values. MOM1 and MOM2 tend

to be centered at θ3 = 0.25. The qualities of MOM1 and MOM2 are dependent on the estimated
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MLEs and the parameter θ. At a larger σ2 = 0.1, MOM2 tends to be superior to the others.

MOM2 occasionally produces an MLE closer to the truth.

3.5. Applications

We apply the proposed model to Gross Domestic Product per capita (GDPc) for a collection

of its neighboring counties. We consider GDPc as a spatial process on the neighborhood county

graph. We construct the graph by defining counties as nodes and the adjacency as edges.

We accessed U.S. county-level GDP data from the U.S. Bureau of Economic Analysis (BEA)

and calculated GDPc by using the county population data from the U.S. Census. We obtained

adjacency county information from the National Bureau of Economic Research (NBER).

We model the GDPc data from 2010 to 2018 in the Mid-Atlantic region (MA). MA includes New

York, New Jersey, Pennsylvania, Delaware, Maryland, West Virginia, Virginia, and Washington

DC, and it has 314 counties and independent cities, which are equivalent to counties in Virginia.

We take partial information from 80% of the nodes to estimate the model and evaluate predictions.

3.5.1. County Graph. We create an undirected equal-weighted graph from the adjacency of

counties in the MA region. We treat each county as a node, and the node is connected to the

neighborhood county with equal weight. The MA graph has 314 nodes and 824 edges, and it is

generated based on the available population and GDPc data from 2010 to 2018.

Our covariance structure is based on the eigenvalues and eigenvectors of the graph Laplacian.

Specific dominant values sensitively influence the eigenvalues, so we have removed seven counties

from the graph, which have extreme GDPc or variability over time. The new graph has 307 nodes

and 792 edges; see Figure 3.15. Its degree distribution is symmetric, and the eigenvalues are

smoothly decreasing; see Figure 3.16. The few dominant eigenvalues indicate that few nodes are

connected to many nodes. There are two zero eigenvalues due to the removal of extreme values, so

we have two unconnected nodes. We use the new graph for our GDPc modeling.

3.5.2. GDPc. Let Yt(ν) be GDPc observation at county ν and time t. The model is as follows:

(3.46) Yt(ν) = µt + µt(ν) +Xt(ν) + εt(ν), ν ∈ G, t = 1, · · · , T,
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Figure 3.15. The neighborhood graph of MA region. We randomly select 80%
observations (Red) to estimate the model.

Figure 3.16. Degree distribution of MA graph and Eigenvalues of Laplacian of
MA graph

where µt is a yearly mean for each t, µt(ν) is a county-wise mean, and Xt(ν) is the graph process as

defined in (3.1). The unstructured noise εt(ν) are independent and identically distributed Gaussian

with mean zero and variance σ2.
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We denote the residual fluctuation as yt(ν).

(3.47) yt(ν) ∼ N(0,Γ(θ, σ2),

where Γ(θ, σ2) = Σ(θ) + σ2I, Σ(θ) = χg(θ,Λ)χT . g(θ,Λ) is the graphical Matérn model (3.6).

Also Λ and χ are eigenvalues and eigenvectors of the MA graph Laplacian.

We consider a Laplace (LP) transform of yt(ν) as sign(yt(ν))
√
|yt(ν)| as well. The distribution

of our observed yt(ν) is a sharper peak and thin longer tail; see Figure 3.17. We conduct modeling

on the yt(ν) and the LP transform.

Test Stationarity. We conduct the two tests in Subsection 3.2.3 to check the stationary model

assumption of our observations. We calculate sample covariance matrices from observations and

then use the transformed covariance matrix (in the eigenbasis of the graph Laplacian) to compute

the test statistics. By the complete independence test, we set the null hypothesis as no correlation

across observations for each node. We reject the null at α = 0.01. We test the covariance structure

with the null hypothesis as there is no correlation if the nodes are not directly connected. We fail

to reject the null at α = 0.01. From the tests, one may conclude that our observations are not

independent but stationary regarding their nodes.

3.5.3. Estimation and Prediction. We estimate θ2, θ3 and σ2 with a given θ1 and a fixed

κ = 0.5 in in-sample. The in-sample has observations on 245 nodes (80% of 307 nodes), which

are randomly chosen, and the rest are assigned to out-of-sample. We implement Nelder-Mead

optimization in R for searching θ2, θ3 and σ2 simultaneously with a given θ1 of (0.1, 0.5, 1)

We compute mean squared error (MSE) and predicted squared error (PMSE), which are the

quantity ((Y − Ỹ )2/N), respectively, for in-sample and out-of-sample prediction problems, where

Ỹ denotes the best linear unbiased predictor (BLUP) of Y based on the holdout observations.

We also evaluate the quality of the model fit by considering the Frobenius norm of the normal-

ized difference between the fitted covariance and the sample covariance matrix, namely, ‖Γ̂−1S −

I‖F , where S is corresponding the sample covariance matrix. We report the results in Table 3.1.
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Figure 3.17. The GDPc data. The bottom illustrates the data set after removing
yearly mean µt and after removing county-wise mean µt(ν).

θ1 θ̂2 θ̂3 σ̂2 NLL MSE PMSE Frob. Diff. LP
1 1.0 1.204 2.103 1.168 1169.563 10.686 12.871 349.379 Y
2 0.5 0.524 1.264 1.130 1169.822 10.496 12.876 349.710 Y
3 0.5 0.553 1.220 1.117 1169.831 10.384 12.870 349.090 Y
4 0.1 0.563 0.438 0.905 1170.385 8.737 12.888 350.323 Y
5 0.1 1.043 0.247 0.457 1170.549 3.411 12.874 349.457 Y
6 1.0 4.085 0.687 3.133 2366.071 4.048 12.001 657.048 N
7 1.0 4.328 0.596 2.821 2366.078 3.280 11.998 657.025 N
8 1.0 6.810 0.272 0.073 2366.196 0.002 12.009 657.337 N
9 0.5 5.778 0.227 0.383 2366.286 0.061 12.028 658.165 N

10 0.5 6.146 0.211 0.013 2366.286 0.000 12.028 658.167 N
11 0.5 5.207 0.257 0.956 2366.287 0.378 12.028 658.171 N
12 0.5 2.509 0.651 3.619 2366.546 5.413 12.085 658.648 N
13 0.1 5.558 0.140 0.006 2367.051 0.000 12.152 662.808 N
14 0.1 5.529 0.143 0.042 2367.054 0.001 12.145 662.444 N
15 0.1 4.712 0.166 0.842 2367.114 0.297 12.158 662.912 N
16 0.1 4.397 0.177 1.148 2367.145 0.552 12.164 663.466 N
17 1.0 0.127 0.210 4.963 2372.258 11.167 12.970 694.511 N
18 0.1 0.161 0.077 4.914 2372.272 10.932 12.972 694.006 N

Table 3.1. The result table is arranged by negative log likelihood (NLL). LP refers
the Laplace transform.
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We select the 7th model in the Table 3.1 as the final model by the minimum PMSE criterion.

Because of the scale difference between the LP transform data and the original yt(ν), LP trans-

forms have smaller negative log-likelihood (NLL) and the Frobenius difference. NLL and Frobenius

difference can only be used within an identical transformation. PMSE allows us to compare all

models across transformations. The estimate of σ2 is closed to its MSE, which indicates the model

is closed to a true model.

We gain some understanding of the GPDc process in the neighborhood graph with our final

model. We gain confirmation that the scale of the processes is related to connectivity to other

countries because the estimate of the scale parameter is in the middle range of our eigenvalues of

the MA graph Laplacian. The smoothness parameter indicates that the correlations are not rapidly

decreasing across the nodes.

3.6. Discussion

We propose a stationary Gaussian process on undirected graphs. It provides a new tool for the

inference of processes on an undirected graph using spectral graph theory. Processes observed on a

set of nodes generalize stationary processes from temporal or spatial domains to the setting of the

undirected graph.

We characterize the processes using the graph Laplacian and study how the graph structure

connects to modeling the process on the graph. In simulation studies, the estimates are more clus-

tered around the true parameters as the size of the node increases, which indicates the consistency

of our estimates. We find that the node configuration and connectivity contributes significantly

to our model because they are associated with the eigenvalues and eigenvectors. The subgraph

approach produces more accurate estimation and prediction for the observations. In the graphi-

cal Matérn model, it is challenging to obtain MLEs of the range parameter and the unstructured

variance and find feasible initial values for the optimization method. In application, we model the

GDPc on a county graph. Our model provides a framework in the context of socio-economic data.

We have done some preliminary research by utilizing the characteristics of the eigenvalues of

the graph Laplacian for the geometric graph. We plan to extend our research to use the weighted

graph and other types of parametric spectral density functions. In application, we may consider
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different ways to construct a graph and embed it with processes by “diffusion map“ approaches

[31], [37]. We further investigate the roles of eigenvectors regarding observed processes.
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